Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Xueqin Wang x
  • All content x
Clear All Modify Search
Open access

Hong Wang, Jie Cao, Jian-bin Su, Xueqin Wang, Dong-mei Zhang, and Xiao-hua Wang

Background: Antithrombin 3 (AT3) is a physiological inhibitor of thrombin, and serum AT3 activity was found to be decreased at the status of type 2 diabetes (T2D). T2D was presented with an increased risk of thrombotic complications at the background of impaired insulin sensitivity. The aim of this study was to investigate the relationship between insulin sensitivity indices and serum AT3 activity in patients with T2D.

Methods: We conducted a cross-sectional study in patients with T2D who consented to participate in the study at the Endocrinology Department of Affiliated 2 Hospital of Nantong University from January 2015 to June 2018. All patients received serum AT3 activity test and 75-g oral glucose tolerance test (OGTT). Basal and systemic insulin sensitivity were assessed by homeostasis model assessment of insulin resistance (HOMA-IR) and Matsuda index (ISIMatsuda), respectively, from the OGTT. And other relevant clinical data were also collected.

Results: Total 1612 patients with T2D were enrolled in the study, with a mean age of 58.67±13.09 years and a median diabetes duration of 6 years (interquartile range, 1–10 years). Across ascending quartiles of serum AT3, HOMA-IR progressively decreased, while ISIMatsuda progressively increased (all p for trend <0.001). Moreover, serum AT3 was negatively correlated with HOMA-IR (r= –0.189, p<0.001) and positively correlated with ISIMatsuda (r=0.221, p<0.001). After adjusting for other metabolic risk factors, hemostatic parameters and glucose-lowering therapies by multivariate liner regression analysis, HOMA-IR (β= −0.185, t= −5.960, p<0.001) and ISIMatsuda (β= 0.197, t=6.632, p<0.001) remained independently associated with the serum AT3 activity in patients with T2D, respectively.

Conclusions: Reduced basal and systemic insulin sensitivity are associated with decreased serum AT3 activity in patients with T2D.

Open access

Anru Wang, Xueqin Yan, Cai Zhang, Caiqi Du, Wenjun Long, Di Zhan, and Xiaoping Luo

Background

Fibroblast growth factor 1 (FGF1) can regulate glucose and lipid metabolism in obese mice. Serum FGF1 has increased in type 2 diabetes mellitus adults and correlated with BMI. This study aimed to indicate conventional weight loss effects on FGF1 in obese children and adolescents.

Materials and methods

Clinical and metabolic parameters of 88 lean and obese individuals (ages 5–15 years) and 39 obese individuals followed with 6 months of lifestyle intervention were collected. Serum FGF1 levels were detected through enzyme-linked immunosorbent assays.

Results

FGF1 levels were increased in obese individuals. Serum FGF1 levels were significantly correlated with BMI and waist circumferences (r = 0.377, P = 0.012; r = 0.301, P = 0.047, respectively). Multivariate stepwise linear regression analyses showed that FGF1 levels were significantly correlated with HbA1c and HOMA-IR (β = 0.371, P = 0.008; β = 0.323, P = 0.021, respectively). Weight loss (2.3 ± 0.1 kg) was accompanied by a significant reduction of circulating FGF1 levels (7.2 ± 0.4 pg/mL). Changes in FGF1 were significantly correlated with changes in fasting glucose, HOMA-IR and low-density lipoprotein cholesterol (β = 0.277, P = 0.020; β = 0.474, P < 0.001; β = 0.320, P = 0.008, respectively).

Conclusion

FGF1 was related to increased risk of insulin resistance in obese children and adolescents. Serum FGF1 reduced after weight loss in obese individuals and was associated with the improvement of insulin resistance. Changes in serum FGF1 were more correlated with insulin resistance than changes in obesity per se.

Open access

Qing Zhu, Jianbin Su, Xueqin Wang, Mengjie Tang, Yingying Gao, and Dongmei Zhang

Graves’ disease (GD), an organ-specific autoimmune disease, is the most common cause of hyperthyroidism. Tumour necrosis factor-alpha (TNF-α) exhibits immunological and metabolic activities involved in the induction and maintenance of immune responses. We attempted to evaluate the relationship between GD and serum TNF-α and its soluble receptors (sTNFRs), soluble TNF receptor 1 and 2 (sTNF-R1 and sTNF-R2). A total of 72 GD patients and 72 matched healthy individuals were recruited for this study. Serum TNF-α and sTNFRs were measured by sandwich ELISA. In our study, no significant difference was observed in TNF-α, but sTNFRs were found to be significantly elevated in GD patients compared to healthy individuals. Serum sTNFR levels were positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and TNF-α was negatively correlated with thyroid-stimulating hormone (TSH) in the GD group. It was also shown that thyrotropin receptor antibody (TRAb) was positively correlated with TNF-α and sTNFRs. Spearman’s correlation analysis showed that only sTNF-R1 was positively correlated with complement C3. Multiple linear regression analysis suggests that serum levels of sTNF-R1 and FT4 may play an important role in the serum level of FT3. According to the median value of FT3 level, GD patients were further divided into a high FT3 group and a low FT3 group. The serum levels of sTNF-R1 in the high FT3 GD group were significantly higher than those in the low FT3 GD group. In conclusion, sTNFRs may play an important role in anti-inflammatory and immune response in GD.