Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Xueqin Wang x
Clear All Modify Search
Open access

Anru Wang, Xueqin Yan, Cai Zhang, Caiqi Du, Wenjun Long, Di Zhan and Xiaoping Luo

Background

Fibroblast growth factor 1 (FGF1) can regulate glucose and lipid metabolism in obese mice. Serum FGF1 has increased in type 2 diabetes mellitus adults and correlated with BMI. This study aimed to indicate conventional weight loss effects on FGF1 in obese children and adolescents.

Materials and methods

Clinical and metabolic parameters of 88 lean and obese individuals (ages 5–15 years) and 39 obese individuals followed with 6 months of lifestyle intervention were collected. Serum FGF1 levels were detected through enzyme-linked immunosorbent assays.

Results

FGF1 levels were increased in obese individuals. Serum FGF1 levels were significantly correlated with BMI and waist circumferences (r = 0.377, P = 0.012; r = 0.301, P = 0.047, respectively). Multivariate stepwise linear regression analyses showed that FGF1 levels were significantly correlated with HbA1c and HOMA-IR (β = 0.371, P = 0.008; β = 0.323, P = 0.021, respectively). Weight loss (2.3 ± 0.1 kg) was accompanied by a significant reduction of circulating FGF1 levels (7.2 ± 0.4 pg/mL). Changes in FGF1 were significantly correlated with changes in fasting glucose, HOMA-IR and low-density lipoprotein cholesterol (β = 0.277, P = 0.020; β = 0.474, P < 0.001; β = 0.320, P = 0.008, respectively).

Conclusion

FGF1 was related to increased risk of insulin resistance in obese children and adolescents. Serum FGF1 reduced after weight loss in obese individuals and was associated with the improvement of insulin resistance. Changes in serum FGF1 were more correlated with insulin resistance than changes in obesity per se.

Open access

Qing Zhu, Jianbin Su, Xueqin Wang, Mengjie Tang, Yingying Gao and Dongmei Zhang

Graves’ disease (GD), an organ-specific autoimmune disease, is the most common cause of hyperthyroidism. Tumour necrosis factor-alpha (TNF-α) exhibits immunological and metabolic activities involved in the induction and maintenance of immune responses. We attempted to evaluate the relationship between GD and serum TNF-α and its soluble receptors (sTNFRs), soluble TNF receptor 1 and 2 (sTNF-R1 and sTNF-R2). A total of 72 GD patients and 72 matched healthy individuals were recruited for this study. Serum TNF-α and sTNFRs were measured by sandwich ELISA. In our study, no significant difference was observed in TNF-α, but sTNFRs were found to be significantly elevated in GD patients compared to healthy individuals. Serum sTNFR levels were positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and TNF-α was negatively correlated with thyroid-stimulating hormone (TSH) in the GD group. It was also shown that thyrotropin receptor antibody (TRAb) was positively correlated with TNF-α and sTNFRs. Spearman’s correlation analysis showed that only sTNF-R1 was positively correlated with complement C3. Multiple linear regression analysis suggests that serum levels of sTNF-R1 and FT4 may play an important role in the serum level of FT3. According to the median value of FT3 level, GD patients were further divided into a high FT3 group and a low FT3 group. The serum levels of sTNF-R1 in the high FT3 GD group were significantly higher than those in the low FT3 GD group. In conclusion, sTNFRs may play an important role in anti-inflammatory and immune response in GD.