Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Xueqin Wang x
Clear All Modify Search
Qing Zhu Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Qing Zhu in
Google Scholar
PubMed
Close
,
Jianbin Su Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Jianbin Su in
Google Scholar
PubMed
Close
,
Xueqin Wang Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Xueqin Wang in
Google Scholar
PubMed
Close
,
Mengjie Tang Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Mengjie Tang in
Google Scholar
PubMed
Close
,
Yingying Gao Department of Rheumatology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Yingying Gao in
Google Scholar
PubMed
Close
, and
Dongmei Zhang Clinical Medicine Research Center, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Dongmei Zhang in
Google Scholar
PubMed
Close

Graves’ disease (GD), an organ-specific autoimmune disease, is the most common cause of hyperthyroidism. Tumour necrosis factor-alpha (TNF-α) exhibits immunological and metabolic activities involved in the induction and maintenance of immune responses. We attempted to evaluate the relationship between GD and serum TNF-α and its soluble receptors (sTNFRs), soluble TNF receptor 1 and 2 (sTNF-R1 and sTNF-R2). A total of 72 GD patients and 72 matched healthy individuals were recruited for this study. Serum TNF-α and sTNFRs were measured by sandwich ELISA. In our study, no significant difference was observed in TNF-α, but sTNFRs were found to be significantly elevated in GD patients compared to healthy individuals. Serum sTNFR levels were positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and TNF-α was negatively correlated with thyroid-stimulating hormone (TSH) in the GD group. It was also shown that thyrotropin receptor antibody (TRAb) was positively correlated with TNF-α and sTNFRs. Spearman’s correlation analysis showed that only sTNF-R1 was positively correlated with complement C3. Multiple linear regression analysis suggests that serum levels of sTNF-R1 and FT4 may play an important role in the serum level of FT3. According to the median value of FT3 level, GD patients were further divided into a high FT3 group and a low FT3 group. The serum levels of sTNF-R1 in the high FT3 GD group were significantly higher than those in the low FT3 GD group. In conclusion, sTNFRs may play an important role in anti-inflammatory and immune response in GD.

Open access
Anru Wang Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Anru Wang in
Google Scholar
PubMed
Close
,
Xueqin Yan Department of Pediatrics, Boai Hospital of Zhongshan, Zhongshan, China

Search for other papers by Xueqin Yan in
Google Scholar
PubMed
Close
,
Cai Zhang Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Cai Zhang in
Google Scholar
PubMed
Close
,
Caiqi Du Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Caiqi Du in
Google Scholar
PubMed
Close
,
Wenjun Long Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Wenjun Long in
Google Scholar
PubMed
Close
,
Di Zhan Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Di Zhan in
Google Scholar
PubMed
Close
, and
Xiaoping Luo Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Xiaoping Luo in
Google Scholar
PubMed
Close

Background

Fibroblast growth factor 1 (FGF1) can regulate glucose and lipid metabolism in obese mice. Serum FGF1 has increased in type 2 diabetes mellitus adults and correlated with BMI. This study aimed to indicate conventional weight loss effects on FGF1 in obese children and adolescents.

Materials and methods

Clinical and metabolic parameters of 88 lean and obese individuals (ages 5–15 years) and 39 obese individuals followed with 6 months of lifestyle intervention were collected. Serum FGF1 levels were detected through enzyme-linked immunosorbent assays.

Results

FGF1 levels were increased in obese individuals. Serum FGF1 levels were significantly correlated with BMI and waist circumferences (r = 0.377, P = 0.012; r = 0.301, P = 0.047, respectively). Multivariate stepwise linear regression analyses showed that FGF1 levels were significantly correlated with HbA1c and HOMA-IR (β = 0.371, P = 0.008; β = 0.323, P = 0.021, respectively). Weight loss (2.3 ± 0.1 kg) was accompanied by a significant reduction of circulating FGF1 levels (7.2 ± 0.4 pg/mL). Changes in FGF1 were significantly correlated with changes in fasting glucose, HOMA-IR and low-density lipoprotein cholesterol (β = 0.277, P = 0.020; β = 0.474, P < 0.001; β = 0.320, P = 0.008, respectively).

Conclusion

FGF1 was related to increased risk of insulin resistance in obese children and adolescents. Serum FGF1 reduced after weight loss in obese individuals and was associated with the improvement of insulin resistance. Changes in serum FGF1 were more correlated with insulin resistance than changes in obesity per se.

Open access
Chun-feng Lu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chun-feng Lu in
Google Scholar
PubMed
Close
,
Wang-shu Liu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Wang-shu Liu in
Google Scholar
PubMed
Close
,
Xiao-qin Ge Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xiao-qin Ge in
Google Scholar
PubMed
Close
,
Feng Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Xu in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
, and
Yan Wang Department of Geriatrics, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Yan Wang in
Google Scholar
PubMed
Close

Background

Adenosine deaminase (ADA) is essential for the differentiation and maturation of lymphocytes, while lymphocytes infiltration in thyroid tissue is a vital pathological feature of Graves’ disease (GD). The aim of the present study was to compare the concentration of ADA between healthy controls (HC) and patients with GD, and evaluate the association between ADA and GD.

Methods

A total of 112 GD patients and 77 matched HC were enrolled in this study. Each participant was examined for thyroid hormones and autoantibodies, ADA concentration, and thyroid ultrasonography.

Results

Serum ADA levels in GD patients were significantly higher than that in HC subgroup (P < 0.001). In GD patients, serum ADA levels were positively associated with serum-free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), thyroid-stimulating hormone receptor antibody (TRAb) levels, and total thyroid gland volume (thyroid VolT) and negatively associated with serum thyroid-stimulating hormone receptor (TSH) levels (all P < 0.05). There were no similar correlations in the HC subgroup. Multiple linear regression analysis suggested that serum TSH, FT3, and ADA levels played an important role in serum TRAb levels.

Conclusions

Our results demonstrated that serum ADA levels were closely associated with GD.

Open access
Hong Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Hong Wang in
Google Scholar
PubMed
Close
,
Jie Cao Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jie Cao in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
,
Dong-mei Zhang Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Dong-mei Zhang in
Google Scholar
PubMed
Close
, and
Xiao-hua Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xiao-hua Wang in
Google Scholar
PubMed
Close

Background

Antithrombin 3 (AT3) is a physiological inhibitor of thrombin, and serum AT3 activity was found to decrease at the status of type 2 diabetes (T2D). T2D was presented with an increased risk of thrombotic complications at the background of impaired insulin sensitivity. The aim of this study was to investigate the relationship between insulin sensitivity indices and serum AT3 activity in patients with T2D.

Methods

We conducted a cross-sectional study in patients with T2D who consented to participate in the study at the Endocrinology Department of Affiliated 2 Hospital of Nantong University from January 2015 to June 2018. All patients received serum AT3 activity test and 75 g oral glucose tolerance test (OGTT). Basal and systemic insulin sensitivity were assessed by homeostasis model assessment of insulin resistance (HOMA-IR) and Matsuda index (ISIMatsuda), respectively, from the OGTT. And other relevant clinical data were also collected.

Results

Total of 1612 patients with T2D were enrolled in the study, with a mean age of 58.67 ± 13.09 years and a median diabetes duration of 6 years (interquartile range, 1–10 years). Across ascending quartiles of serum AT3 activity, HOMA-IR progressively decreased, while ISIMatsuda progressively increased (all P for trend < 0.001). Moreover, serum AT3 activity was negatively correlated with HOMA-IR (r = −0.189, P < 0.001) and positively correlated with ISIMatsuda (r = 0.221, P < 0.001). After adjusting for other metabolic risk factors, hemostatic parameters and glucose-lowering therapies by multivariate linear regression analysis, HOMA-IR (β = −0.185, t = −5.960, P < 0.001) and ISIMatsuda (β = 0.197, t = 6.632, P < 0.001) remained independently associated with the serum AT3 activity in patients with T2D, respectively.

Conclusions

Reduced basal and systemic insulin sensitivity are associated with decreased serum AT3 activity in patients with T2D.

Open access
Chun-feng Lu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chun-feng Lu in
Google Scholar
PubMed
Close
,
Xiao-qin Ge Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xiao-qin Ge in
Google Scholar
PubMed
Close
,
Yan Wang Department of Geriatrics, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Yan Wang in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
,
Dong-mei Zhang Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Dong-mei Zhang in
Google Scholar
PubMed
Close
,
Feng Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Xu in
Google Scholar
PubMed
Close
,
Wang-shu Liu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Wang-shu Liu in
Google Scholar
PubMed
Close
, and
Min Su Department of Endocrinology, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China

Search for other papers by Min Su in
Google Scholar
PubMed
Close

Background

Prolonged heart rate-corrected QT (QTc) interval may reflect poor prognosis of patients with type 2 diabetes (T2D). Serum adenosine deaminase (ADA) levels are related to hyperglycemia, insulin resistance (IR) and inflammation, which may participate in diabetic complications. We investigated the association of serum ADA levels with prolonged QTc interval in a large-scale sample of patients with T2D.

Methods

In this cross-sectional study, a total of 492 patients with T2D were recruited. Serum ADA levels were determined by venous blood during fasting. QTc interval was estimated from resting 12-lead ECGs, and prolonged QTc interval was defined as QTc > 440 ms.

Results

In this study, the prevalence of prolonged QTc interval was 22.8%. Serum ADA levels were positively associated with QTc interval (r = 0.324, P < 0.0001). The proportion of participants with prolonged QTc interval increased significantly from 9.2% in the first tertile (T1) to 24.7% in the second tertile (T2) and 39.0% in the third tertile (T3) of ADA (P for trend < 0.001). After adjusting for other possible risk factors by multiple linear regression analysis, serum ADA level was still significantly associated with QTc interval (β = 0.217, t = 3.400, P < 0.01). Multivariate logistic regression analysis showed that female (OR 5.084, CI 2.379–10.864, P < 0.001), insulin-sensitizers treatment (OR 4.229, CI 1.290–13.860, P = 0.017) and ADA (OR 1.212, CI 1.094–1.343, P < 0.001) were independent contributors to prolonged QTc interval.

Conclusions

Serum ADA levels were independently associated with prolonged QTc interval in patients with T2D.

Open access
Wang-shu Liu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Wang-shu Liu in
Google Scholar
PubMed
Close
,
Ling-yan Hua Department of Ophthalmology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Ling-yan Hua in
Google Scholar
PubMed
Close
,
Su-xiang Zhu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Su-xiang Zhu in
Google Scholar
PubMed
Close
,
Feng Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Xu in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
,
Chun-feng Lu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chun-feng Lu in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
, and
Feng Qi Emergency Intensive Care Unit, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Qi in
Google Scholar
PubMed
Close

Background

The aim of the study was to explore whether plasma stromal cell-derived factor 1 (SDF-1) levels are associated with the EZSCAN score and its derived indicators in patients with type 2 diabetes (T2D).

Methods

From July 2020 to December 2020, a total of 253 patients with T2D were consecutively recruited. Serum SDF-1 levels were measured by sandwich ELISA. EZSCAN test was applied to evaluate the sudomotor function of each patient, and based on the results, EZSCAN score, cardiac autonomic neuropathy risk score (CANRS) and cardiovascular risk score (CVDRS) were calculated by particular algorithms. In addition, other relevant clinical data were also collected.

Results

With increasing tertiles of serum SDF-1 levels, the CANRS and CVDRS significantly increased (both Pfor trend <0.001), while the EZSCAN score significantly decreased (Pfor trend <0.001). Moreover, serum SDF-1 levels were significantly and positively correlated with the CANRS and CVDRS (r = 0.496 and 0.510, respectively, both P  < 0.001), and negatively correlated with the EZSCAN score (r = −0.391, P  < 0.001). Furthermore, multivariate linear regression analyses were constructed, and after adjusting for other clinical covariates, serum SDF-1 levels were independently responsible for EZSCAN score (β = −0.273, t = −3.679, P  < 0.001), CANRS (β = 0.334, t = 5.110, P  < 0.001) and CVDRS (β = 0.191, t = 4.983, P  = 0.003).

Conclusions

SDF-1 levels in serum were independently associated with the EZSCAN score and its derived indicators, such as CANRS and CVDRS in patients with T2D.

Open access
Hui-qing Yuan Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Hui-qing Yuan in
Google Scholar
PubMed
Close
,
Jia-xi Miao Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jia-xi Miao in
Google Scholar
PubMed
Close
,
Jia-ping Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jia-ping Xu in
Google Scholar
PubMed
Close
,
Su-xiang Zhu Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Su-xiang Zhu in
Google Scholar
PubMed
Close
,
Feng Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Xu in
Google Scholar
PubMed
Close
,
Xiao-hua Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xiao-hua Wang in
Google Scholar
PubMed
Close
,
Chun-hua Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chun-hua Wang in
Google Scholar
PubMed
Close
,
Chao Yu Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chao Yu in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
, and
Dong-mei Zhang Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Dong-mei Zhang in
Google Scholar
PubMed
Close

Background

Increased serum cystatin C (CysC) can predict the onset of type 2 diabetes (T2D). Meanwhile, impaired pancreatic α- and β-cell functions get involved in the pathophysiological processes of T2D. So this study was to explore the relationships between serum CysC levels and pancreatic α- and β-cell functions in T2D.

Methods

In this cross-sectional observational study, a total of 2634 patients with T2D were consecutively recruited. Each recruited patient received a serum CysC test and oral glucose tolerance test for synchronous detection of serum C-peptide and plasma glucagon. As components of pancreatic β-cell function, insulin secretion and sensitivity indices were evaluated by C-peptide area under the curve (AUC-CP) and C-peptide-substituted Matsuda’s index (Matsuda-CP), respectively. Fasting glucagon (F-GLA) and post-challenge glucagon calculated by glucagon area under the curve (AUC-GLA) were used to assess pancreatic α-cell function. These skewed indices and were further natural log-transformed (ln).

Results

With quartiles of serum CysC levels ascending, AUC-CP, F-GLA and AUC-GLA were increased, while Matsuda-CP was decreased (P for trend <0.001). Moreover, serum CysC levels were positively related to lnAUC-CP, lnF-GLA and lnAUC-GLA (r= 0.241, 0.131 and 0.208, respectively, P < 0.001), and inversely related to lnMatsuda-CP (r= –0.195, P  < 0.001). Furthermore, after controlling for other relevant variables via multivariable linear regression analysis, serum CysC levels were identified to account for lnAUC-CP (β= 0.178, t= 10.518, P  < 0.001), lnMatsuda-CP (β= –0.137, t= –7.118, P  < 0.001), lnF-GLA (β= 0.049, t= 2.263, P = 0.024) and lnAUC-GLA (β= 0.121, t= 5.730, P  < 0.001).

Conclusions

Increased serum CysC levels may be partly responsible for increased insulin secretion from β-cells, decreased systemic insulin sensitivity, and elevated fasting and postprandial glucagon secretion from α-cells in T2D.

Open access