Search Results
Search for other papers by Xue-Jiao Yang in
Google Scholar
PubMed
Search for other papers by Le-Yang Zhang in
Google Scholar
PubMed
Search for other papers by Qing-Hua Ma in
Google Scholar
PubMed
Search for other papers by Hong-Peng Sun in
Google Scholar
PubMed
Search for other papers by Yong Xu in
Google Scholar
PubMed
Search for other papers by Xing Chen in
Google Scholar
PubMed
Search for other papers by Chen-Wei Pan in
Google Scholar
PubMed
Purpose:
We aimed to examine the associations of platelet parameters with the presence of metabolic syndrome in community-dwelling older Chinese adults.
Methods:
Study sample was from the Weitang Geriatric Diseases Study, which included 4338 individuals aged 60 years or above. The mean age of the participants was 68 years. Metabolic syndrome was defined based on the Adult Treatment Panel III criteria. Platelet parameters were assessed using an automated hematology analyzer. Multiple logistic regression models were fitted to examine relationships between the platelet parameters and the presence of metabolic syndrome after adjusting for potential confounders.
Results:
The adjusted odds ratio (95% CI) of metabolic syndrome for the highest quartile of platelet parameters (platelet count, mean platelet volume, plateletcrit, platelet distribution width, platelet larger cell ratio) when compared to the lowest quartile were 1.32 (1.06, 1.64), 1.00 (0.81, 1.24), 1.37 (1.10, 1.71), 1.45 (1.14, 1.83), 1.11 (0.89, 1.39), respectively. Hypertension and diabetes modified the relationship between platelet distribution width and metabolic syndrome with the associations being significant in hypertensive and non-diabetic groups. The levels of platelet distribution width increased with the risk of metabolic syndrome in men but not in women.
Conclusion:
The levels of platelet count, plateletcrit and platelet distribution width increased in older adults with metabolic syndrome, suggesting that these parameters may be useful biomarkers for further risk appraisal of metabolic syndrome in aged population.
Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
Search for other papers by Tian Zhou in
Google Scholar
PubMed
Department of Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
Search for other papers by Dai-wei Zhao in
Google Scholar
PubMed
Search for other papers by Ning Ma in
Google Scholar
PubMed
Search for other papers by Xue-ying Zhu in
Google Scholar
PubMed
Search for other papers by Xing-hong Chen in
Google Scholar
PubMed
Search for other papers by Xue Luo in
Google Scholar
PubMed
Search for other papers by Song Chen in
Google Scholar
PubMed
Search for other papers by Qing-jun Gao in
Google Scholar
PubMed
Objective
Thyroid cancer (THCA) is the most common endocrine cancer in the world. Although most patients with THCA have a good prognosis, the prognosis of those with THCA who have an extra-glandular invasion, vascular invasion, and distant metastasis is poor. Therefore, it is very important to find potential biomarkers that can effectively predict the prognosis and progression of highly aggressive THCAs. It has been identified that forkhead box P4 (FOXP4) may be a new biomarker for the proliferation and prognosis for tumor diagnosis. However, the expression and function of FOXP4 in THCA remain to be determined.
Methods
In the present study, the function of FOXP4 in cells was investigated through the comprehensive analysis of data in The Cancer Genome Atlas and combined with experiments including immunohistochemistry (IHC), colony formation, Cell Counting Kit-8 assay, wound scratch healing, and transwell invasion assay.
Results
In the present study, relevant bioinformatic data showed that FOXP4 was highly expressed in THCA, which was consistent with the results of the IHC and cell experiments. Meanwhile, 10 FOXP4-related hub genes were identified as potential diagnostic genes for THCA. It was found in further experiments that FOXP4 was located in the nucleus of THCA cells, and the expression of FOXP4 in the nucleus was higher than that in the cytoplasm. FOXP4 knockdown inhibited in vitro proliferation of the THCA cells, whereas overexpression promoted the proliferation and migration of THCA cells. Furthermore, deficiency of FOXP4 induced cell-cycle arrest.
Conclusion
FOXP4 might be a potential target for diagnosing and treating THCA.