Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Xiaoying Li x
Clear All Modify Search
Xuechao Jiang Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Xuechao Jiang in
Google Scholar
PubMed
Close
,
Yonghui Wang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Yonghui Wang in
Google Scholar
PubMed
Close
,
Xiaoying Li Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Xiaoying Li in
Google Scholar
PubMed
Close
,
Leqi He Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Leqi He in
Google Scholar
PubMed
Close
,
Qian Yang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Qian Yang in
Google Scholar
PubMed
Close
,
Wei Wang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Wei Wang in
Google Scholar
PubMed
Close
,
Jun Liu Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Jun Liu in
Google Scholar
PubMed
Close
, and
Bingbing Zha Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Bingbing Zha in
Google Scholar
PubMed
Close

B lymphocytes are the source of autoantibodies against the thyroid-stimulating hormone receptor (TSHR) in Graves’ disease (GD). Characterization of autoimmune B-cell expression profiles might enable a better understanding of GD pathogenesis. To reveal this, the expression levels of long noncoding RNAs (lncRNAs) and mRNAs (genes) in purified B cells from patients with newly diagnosed GD and healthy individuals were compared using microarrays, which elucidated 604 differentially expressed lncRNAs (DE-lncRNAs) and 410 differentially expressed genes (DEGs). GO and pathway analyses revealed that the DEGs are mainly involved in immune response. A protein–protein interaction network presented experimentally validated interactions among the DEGs. Two independent algorithms were used to identify the DE-lncRNAs that regulate the DEGs. Functional annotation of the deregulated lncRNA–mRNA pairs identified 14 pairs with mRNAs involved in cell proliferation. The lncRNAs TCONS_00022357-XLOC_010919 and n335641 were predicted to regulate TCL1 family AKT coactivator A (TCL1A), and the lncRNA n337845 was predicted to regulate SH2 domain containing 1A (SH2D1A). TCL1A and SH2D1A are highly involved in B-cell proliferation. The differential expression of both genes was validated by qRT-PCR. In conclusion, lncRNA and mRNA expression profiles of B cells from patients with GD indicated that the lncRNA–mRNA pairs n335641–TCL1A, TCONS_00022357-XLOC_010919–TCL1A, and n337845–SH2D1A may participate in GD pathogenesis by modulating B-cell proliferation and survival. Therefore, the identified lncRNA and mRNA may represent novel biomarkers and therapeutic targets for GD.

Open access
Leqi He Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Leqi He in
Google Scholar
PubMed
Close
,
Xiaoying Li Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Xiaoying Li in
Google Scholar
PubMed
Close
,
Zaoping Chen Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Zaoping Chen in
Google Scholar
PubMed
Close
,
Wei Wang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Wei Wang in
Google Scholar
PubMed
Close
,
Kai Wang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Kai Wang in
Google Scholar
PubMed
Close
,
Xinmei Huang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Xinmei Huang in
Google Scholar
PubMed
Close
,
Qian Yang Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Qian Yang in
Google Scholar
PubMed
Close
,
Wencai Ke Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Wencai Ke in
Google Scholar
PubMed
Close
,
Jun Liu Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Jun Liu in
Google Scholar
PubMed
Close
, and
Bingbing Zha Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China

Search for other papers by Bingbing Zha in
Google Scholar
PubMed
Close

Objective

To explore the relationship between estradiol (E2) and thyroid function during the second trimester of pregnancy and the effect of E2 on sodium iodide transporter (NIS) expression in cultured thyroid cells.

Materials and methods

We analyzed relationships between E2 and thyroid function in 196 pregnant women during the second trimester. Multiple linear regression analysis was performed between E2 and thyroid function. The human thyroid Nthy-ori3-1 cells were cultured in different E2 concentrations, and the mRNA levels of NIS, estrogen receptor (ER)-α, and ER-β were measured by quantitative real-time PCR. Their protein levels were assessed by western blot.

Results

E2 was positively correlated with thyroid-stimulating hormone (TSH) and negatively correlated with free thyroxine (FT4) (P < 0.05). When we corrected for age, BMI, alanine aminotransferase, and serum creatinine, E2 was still negatively correlated with FT4 (P < 0.5) during the second trimester. In Nthy-ori3-1 cells treated with 10 nM E2, NIS and ER-β mRNA levels were significantly reduced, while ER-α mRNA level was not altered (P > 0.5). Moreover, 10 nM E2 significantly decreased protein levels of ER-β, phosphorylated versions of protein kinase A (p-PKA), phosphorylated versions of cAMP response element-binding protein (p-CREB), and NIS, while treatment with the ER-β inhibitor restored the expression of p-PKA, p-CREB, and NIS (P < 0.05).

Conclusion

High concentration of E2 has a negative correlation with FT4. High concentration of E2 can inhibit the NIS expression through the ER-β-mediated pathway, which may cause thyroid hormone fluctuations during pregnancy.

Open access