Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Wenqi Yang x
  • All content x
Clear All Modify Search
Open access

Yang Lv, Ning Pu, Wei-lin Mao, Wen-qi Chen, Huan-yu Wang, Xu Han, Yuan Ji, Lei Zhang, Da-yong Jin, Wen-Hui Lou, and Xue-feng Xu

Aim

We aim to investigate the clinical characteristics of the rectal NECs and the prognosis-related factors and construct a nomogram for prognosis prediction.

Methods

The data of 41 patients and 1028 patients with rectal NEC were retrieved respectively from our institution and SEER database. OS or PFS was defined as the major study outcome. Variables were compared by chi-square test and t-test when appropriate. Kaplan–Meier analysis with log-rank test was used for survival analysis and the Cox regression analysis was applied. The nomogram integrating risk factors for predicting OS was constructed by R to achieve superior discriminatory ability. Predictive utility of the nomogram was determined by concordance index (C-index) and calibration curve.

Results

In the univariate and multivariate analyses, tumor differentiation, N stage, M stage and resection of primary site were identified as independent prognostic indicators. The linear regression relationship was found between the value of Ki-67 index and the duration of OS (P < 0.05). Furthermore, the independent prognostic factors were added to formulate prognostic nomogram. The constructed nomogram showed good performance according to the C-index.

Conclusions

Contrary to WHO classification guideline, we found that the rectal NEC diseases are heterogeneous and should be divided as different categories according to the pathological differentiation. Besides, the nomogram formulated in this study showed excellent discriminative capability to predict OS for those patients. More advanced predictive model for this disease is required to assist risk stratification via the formulated nomogram.

Open access

Liangming Li, Yuan Wei, Chunlu Fang, Shujing Liu, Fu Zhou, Ge Zhao, Yaping Li, Yuan Luo, Ziyi Guo, Weiqun Lin, and Wenqi Yang

Exercise has been recommended as an important strategy to improve glucose metabolism in obesity. Adipose tissue fibrosis is associated with inflammation and is implicated in glucose metabolism disturbance and insulin resistance in obesity. However, the effect of exercise on the progression of adipose tissue fibrosis is still unknown. The aim of the present study was to investigate whether exercise retarded the progression of adipose tissue fibrosis and ameliorated glucose homeostasis in diet-induced obese mice. To do so, obesity and adipose tissue fibrosis in mice were induced by high-fat diet feeding for 12 weeks and the mice subsequently received high-fat diet and exercise intervention for another 12 weeks. Exercise alleviated high-fat diet-induced glucose intolerance and insulin resistance. Continued high-fat diet feeding exacerbated collagen deposition and further increased fibrosis-related gene expression in adipose tissue. Exercise attenuated or reversed these changes. Additionally, PPARγ, which has been shown to inhibit adipose tissue fibrosis, was observed to be increased following exercise. Moreover, exercise decreased the expression of HIF-1α in adipose fibrosis, and adipose tissue inflammation was inhibited. In conclusion, our data indicate that exercise attenuates and even reverses the progression of adipose tissue fibrosis, providing a plausible mechanism for its beneficial effects on glucose metabolism in obesity.

Open access

Wenqi Yang, Ling Liu, Yuan Wei, Chunlu Fang, Fu Zhou, Jinbao Chen, Qinghua Han, Meifang Huang, Xuan Tan, Qiuyue Liu, Qiang Pan, Lu Zhang, Xiaojuan Lei, and Liangming Li

Objective

The protective effects of exercise against glucose dysmetabolism have been generally reported. However, the mechanism by which exercise improves glucose homeostasis remains poorly understood. The FGF21–adiponectin axis participates in the regulation of glucose metabolism. Elevated levels of FGF21 and decreased levels of adiponectin in obesity indicate FGF21–adiponectin axis dysfunction. Hence, we investigated whether exercise could improve the FGF21–adiponectin axis impairment and ameliorate disturbed glucose metabolism in diet-induced obese mice.

Methods

Eight-week-old C57BL/6J mice were randomly assigned to three groups: low-fat diet control group, high-fat diet group and high-fat diet plus exercise group. Glucose metabolic parameters, the ability of FGF21 to induce adiponectin, FGF21 receptors and co-receptor levels and adipose tissue inflammation were evaluated after 12 weeks of intervention.

Results

Exercise training led to reduced levels of fasting blood glucose and insulin, improved glucose tolerance and better insulin sensitivity in high-fat diet-induced obese mice. Although serum FGF21 levels were not significantly changed, both total and high-molecular-weight adiponectin concentrations were markedly enhanced by exercise. Importantly, exercise protected against high-fat diet-induced impaired ability of FGF21 to stimulate adiponectin secretion. FGF21 co-receptor, β-klotho, as well as receptors, FGFR1 and FGFR2, were upregulated by exercise. We also found that exercise inhibited adipose tissue inflammation, which may contribute to the improvement in the FGF21–adiponectin axis impairment.

Conclusions

Our data indicate exercise protects against high-fat diet-induced FGF21–adiponectin axis impairment, and may thereby exert beneficial effects on glucose metabolism.