Search Results
Search for other papers by Laura van Iersel in
Google Scholar
PubMed
Search for other papers by Sarah C Clement in
Google Scholar
PubMed
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
Search for other papers by Antoinette Y N Schouten-van Meeteren in
Google Scholar
PubMed
Search for other papers by Annemieke M Boot in
Google Scholar
PubMed
Search for other papers by Hedi L Claahsen-van der Grinten in
Google Scholar
PubMed
Search for other papers by Bernd Granzen in
Google Scholar
PubMed
Search for other papers by K Sen Han in
Google Scholar
PubMed
Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
Search for other papers by Geert O Janssens in
Google Scholar
PubMed
Search for other papers by Erna M Michiels in
Google Scholar
PubMed
Search for other papers by A S Paul van Trotsenburg in
Google Scholar
PubMed
Search for other papers by W Peter Vandertop in
Google Scholar
PubMed
Department of Pediatric Oncology/Hematology, Amsterdam University Medical Center, location VU University Medical Center, Amsterdam, The Netherlands
Search for other papers by Dannis G van Vuurden in
Google Scholar
PubMed
Search for other papers by Hubert N Caron in
Google Scholar
PubMed
Department of Pediatrics, Emma Children’s Hospital, Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
Search for other papers by Leontien C M Kremer in
Google Scholar
PubMed
Search for other papers by Hanneke M van Santen in
Google Scholar
PubMed
Objective
The incidence of cranial radiotherapy (cRT)–induced central hypothyroidism (TSHD) in childhood brain tumor survivors (CBTS) is reported to be low. However, TSHD may be more frequent than currently suspected, as its diagnosis is challenging due to broad reference ranges for free thyroxine (FT4) concentrations. TSHD is more likely to be present when FT4 levels progressively decline over time. Therefore, we determined the incidence and latency time of TSHD and changes of FT4 levels over time in irradiated CBTS.
Design
Nationwide, 10-year retrospective study of irradiated CBTS.
Methods
TSHD was defined as ‘diagnosed’ when FT4 concentrations were below the reference range with low, normal or mildly elevated thyrotropin levels, and as ‘presumed’ when FT4 declined ≥ 20% within the reference range. Longitudinal FT4 concentrations over time were determined in growth hormone deficient (GHD) CBTS with and without diagnosed TSHD from cRT to last follow-up (paired t-test).
Results
Of 207 included CBTS, the 5-year cumulative incidence of diagnosed TSHD was 20.3%, which occurred in 50% (25/50) of CBTS with GHD by 3.4 years (range, 0.9–9.7) after cRT. Presumed TSHD was present in 20 additional CBTS. The median FT4 decline in GH-deficient CBTS was 41.3% (P < 0.01) to diagnosis of TSHD and 12.4% (P = 0.02) in GH-deficient CBTS without diagnosed TSHD.
Conclusions
FT4 concentrations in CBTS significantly decline over time after cRT, also in those not diagnosed with TSHD, suggesting that TSHD occurs more frequently and earlier than currently reported. The clinical relevance of cRT-induced FT4 decline over time should be investigated in future studies.
Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital/ University Medical Center Utrecht, Utrecht, The Netherlands
Search for other papers by S C Clement in
Google Scholar
PubMed
Search for other papers by W E Visser in
Google Scholar
PubMed
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
Search for other papers by C A Lebbink in
Google Scholar
PubMed
Search for other papers by D Albano in
Google Scholar
PubMed
Search for other papers by H L Claahsen-van der Grinten in
Google Scholar
PubMed
Search for other papers by A Czarniecka in
Google Scholar
PubMed
Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Search for other papers by R P Dias in
Google Scholar
PubMed
Search for other papers by M P Dierselhuis in
Google Scholar
PubMed
Search for other papers by I Dzivite-Krisane in
Google Scholar
PubMed
Search for other papers by R Elisei in
Google Scholar
PubMed
Search for other papers by A Garcia-Burillo in
Google Scholar
PubMed
Search for other papers by L Izatt in
Google Scholar
PubMed
Search for other papers by C Kanaka-Gantenbein in
Google Scholar
PubMed
Search for other papers by H Krude in
Google Scholar
PubMed
Search for other papers by L Lamartina in
Google Scholar
PubMed
Search for other papers by K Lorenz in
Google Scholar
PubMed
Search for other papers by M Luster in
Google Scholar
PubMed
Search for other papers by R Navardauskaitė in
Google Scholar
PubMed
Search for other papers by M Negre Busó in
Google Scholar
PubMed
Search for other papers by K Newbold in
Google Scholar
PubMed
Search for other papers by R P Peeters in
Google Scholar
PubMed
Search for other papers by G Pellegriti in
Google Scholar
PubMed
Search for other papers by A Piccardo in
Google Scholar
PubMed
Search for other papers by A L Priego in
Google Scholar
PubMed
Search for other papers by A Redlich in
Google Scholar
PubMed
Search for other papers by L de Sanctis in
Google Scholar
PubMed
Search for other papers by M Sobrinho-Simões in
Google Scholar
PubMed
Search for other papers by A S P van Trotsenburg in
Google Scholar
PubMed
Search for other papers by F A Verburg in
Google Scholar
PubMed
Search for other papers by M Vriens in
Google Scholar
PubMed
Search for other papers by T P Links in
Google Scholar
PubMed
Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
Office for Rare Conditions, University of Glasgow, Glasgow, UK
Search for other papers by S F Ahmed in
Google Scholar
PubMed
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
Search for other papers by H M van Santen in
Google Scholar
PubMed
Background
Although differentiated thyroid carcinoma (DTC) is the most frequent endocrine pediatric cancer, it is rare in childhood and adolescence. While tumor persistence and recurrence are not uncommon, mortality remains extremely low. Complications of treatment are however reported in up to 48% of the survivors. Due to the rarity of the disease, current treatment guidelines are predominantly based on the results of small observational retrospective studies and extrapolations from results in adult patients. In order to develop more personalized treatment and follow-up strategies (aiming to reduce complication rates), there is an unmet need for uniform international prospective data collection and clinical trials.
Methods and analysis
The European pediatric thyroid carcinoma registry aims to collect clinical data for all patients ≤18 years of age with a confirmed diagnosis of DTC who have been diagnosed, assessed, or treated at a participating site. This registry will be a component of the wider European Registries for Rare Endocrine Conditions project which has close links to Endo-ERN, the European Reference Network for Rare Endocrine Conditions. A multidisciplinary expert working group was formed to develop a minimal dataset comprising information regarding demographic data, diagnosis, treatment, and outcome. We constructed an umbrella-type registry, with a detailed basic dataset. In the future, this may provide the opportunity for research teams to integrate clinical research questions.
Ethics and dissemination
Written informed consent will be obtained from all participants and/or their parents/guardians. Summaries and descriptive analyses of the registry will be disseminated via conference presentations and peer-reviewed publications.