Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Rachel B Smith x
Clear All Modify Search
Supitcha Patjamontri Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK
Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Search for other papers by Supitcha Patjamontri in
Google Scholar
PubMed
Close
,
Alexander Spiers MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK

Search for other papers by Alexander Spiers in
Google Scholar
PubMed
Close
,
Rachel B Smith MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK
National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
Mohn Centre for Children’s Health and Wellbeing, Imperial College London, London, UK

Search for other papers by Rachel B Smith in
Google Scholar
PubMed
Close
,
Chen Shen MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK

Search for other papers by Chen Shen in
Google Scholar
PubMed
Close
,
Jo Adaway Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

Search for other papers by Jo Adaway in
Google Scholar
PubMed
Close
,
Brian G Keevil Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

Search for other papers by Brian G Keevil in
Google Scholar
PubMed
Close
,
Mireille B Toledano MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK
National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
Mohn Centre for Children’s Health and Wellbeing, Imperial College London, London, UK

Search for other papers by Mireille B Toledano in
Google Scholar
PubMed
Close
, and
S Faisal Ahmed Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK

Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Close

Context

Salivary androgens represent non-invasive biomarkers of puberty that may have utility in clinical and population studies.

Objective

To understand normal age-related variation in salivary sex steroids and demonstrate their correlation to pubertal development in young adolescents.

Design, setting and participants

School-based cohort study of 1495 adolescents at two time points for collecting saliva samples approximately 2 years apart.

Outcome measures

The saliva samples were analyzed for five androgens (testosterone, androstenedione (A4), 17-hydroxyprogesterone, 11-ketotestosterone and 11β-hydroxyandrostenedione) using liquid chromatography-mass spectrometry; in addition, salivary dehydroepiandrosterone (DHEA) and oestradiol (OE2) were analysed by ELISA. The pubertal staging was self-reported using the Pubertal Development Scale (PDS).

Results

In 1236 saliva samples from 903 boys aged between 11 and 16 years, salivary androgens except DHEA exhibited an increasing trend with an advancing age (ANOVA, P < 0.001), with salivary testosterone and A4 concentration showing the strongest correlation (r = 0.55, P < 0.001 and r = 0.48, P < 0.001, respectively). In a subgroup analysis of 155 and 63 saliva samples in boys and girls, respectively, morning salivary testosterone concentrations showed the highest correlation with composite PDS scores and voice-breaking category from PDS self-report in boys (r = 0.75, r = 0.67, respectively). In girls, salivary DHEA and OE2 had negligible correlations with age or composite PDS scores.

Conclusion

In boys aged 11–16 years, an increase in salivary testosterone and A4 is associated with self-reported pubertal progress and represents valid non-invasive biomarkers of puberty in boys.

Open access