Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Qing Zhu x
Clear All Modify Search
Qing Zhu Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Qing Zhu in
Google Scholar
PubMed
Close
,
Jianbin Su Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Jianbin Su in
Google Scholar
PubMed
Close
,
Xueqin Wang Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Xueqin Wang in
Google Scholar
PubMed
Close
,
Mengjie Tang Department of Endocrinology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Mengjie Tang in
Google Scholar
PubMed
Close
,
Yingying Gao Department of Rheumatology, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Yingying Gao in
Google Scholar
PubMed
Close
, and
Dongmei Zhang Clinical Medicine Research Center, Nantong City No 1 People’s Hospital and Second Affiliated Hospital of Nantong University, Jiangsu, China

Search for other papers by Dongmei Zhang in
Google Scholar
PubMed
Close

Graves’ disease (GD), an organ-specific autoimmune disease, is the most common cause of hyperthyroidism. Tumour necrosis factor-alpha (TNF-α) exhibits immunological and metabolic activities involved in the induction and maintenance of immune responses. We attempted to evaluate the relationship between GD and serum TNF-α and its soluble receptors (sTNFRs), soluble TNF receptor 1 and 2 (sTNF-R1 and sTNF-R2). A total of 72 GD patients and 72 matched healthy individuals were recruited for this study. Serum TNF-α and sTNFRs were measured by sandwich ELISA. In our study, no significant difference was observed in TNF-α, but sTNFRs were found to be significantly elevated in GD patients compared to healthy individuals. Serum sTNFR levels were positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and TNF-α was negatively correlated with thyroid-stimulating hormone (TSH) in the GD group. It was also shown that thyrotropin receptor antibody (TRAb) was positively correlated with TNF-α and sTNFRs. Spearman’s correlation analysis showed that only sTNF-R1 was positively correlated with complement C3. Multiple linear regression analysis suggests that serum levels of sTNF-R1 and FT4 may play an important role in the serum level of FT3. According to the median value of FT3 level, GD patients were further divided into a high FT3 group and a low FT3 group. The serum levels of sTNF-R1 in the high FT3 GD group were significantly higher than those in the low FT3 GD group. In conclusion, sTNFRs may play an important role in anti-inflammatory and immune response in GD.

Open access
Tian Zhou School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China
Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China

Search for other papers by Tian Zhou in
Google Scholar
PubMed
Close
,
Dai-wei Zhao School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China
Department of Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China

Search for other papers by Dai-wei Zhao in
Google Scholar
PubMed
Close
,
Ning Ma School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China

Search for other papers by Ning Ma in
Google Scholar
PubMed
Close
,
Xue-ying Zhu School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China

Search for other papers by Xue-ying Zhu in
Google Scholar
PubMed
Close
,
Xing-hong Chen Department of Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China

Search for other papers by Xing-hong Chen in
Google Scholar
PubMed
Close
,
Xue Luo Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China

Search for other papers by Xue Luo in
Google Scholar
PubMed
Close
,
Song Chen School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China

Search for other papers by Song Chen in
Google Scholar
PubMed
Close
, and
Qing-jun Gao Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China

Search for other papers by Qing-jun Gao in
Google Scholar
PubMed
Close

Objective

Thyroid cancer (THCA) is the most common endocrine cancer in the world. Although most patients with THCA have a good prognosis, the prognosis of those with THCA who have an extra-glandular invasion, vascular invasion, and distant metastasis is poor. Therefore, it is very important to find potential biomarkers that can effectively predict the prognosis and progression of highly aggressive THCAs. It has been identified that forkhead box P4 (FOXP4) may be a new biomarker for the proliferation and prognosis for tumor diagnosis. However, the expression and function of FOXP4 in THCA remain to be determined.

Methods

In the present study, the function of FOXP4 in cells was investigated through the comprehensive analysis of data in The Cancer Genome Atlas and combined with experiments including immunohistochemistry (IHC), colony formation, Cell Counting Kit-8 assay, wound scratch healing, and transwell invasion assay.

Results

In the present study, relevant bioinformatic data showed that FOXP4 was highly expressed in THCA, which was consistent with the results of the IHC and cell experiments. Meanwhile, 10 FOXP4-related hub genes were identified as potential diagnostic genes for THCA. It was found in further experiments that FOXP4 was located in the nucleus of THCA cells, and the expression of FOXP4 in the nucleus was higher than that in the cytoplasm. FOXP4 knockdown inhibited in vitro proliferation of the THCA cells, whereas overexpression promoted the proliferation and migration of THCA cells. Furthermore, deficiency of FOXP4 induced cell-cycle arrest.

Conclusion

FOXP4 might be a potential target for diagnosing and treating THCA.

Open access
Yun Hu Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
Department of Immunology, Nanjing Medical University, Jiangsu, China

Search for other papers by Yun Hu in
Google Scholar
PubMed
Close
,
Na Li Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Na Li in
Google Scholar
PubMed
Close
,
Peng Jiang Department of Thyroid and Breast Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Peng Jiang in
Google Scholar
PubMed
Close
,
Liang Cheng Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Liang Cheng in
Google Scholar
PubMed
Close
,
Bo Ding Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Bo Ding in
Google Scholar
PubMed
Close
,
Xiao-Mei Liu Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Xiao-Mei Liu in
Google Scholar
PubMed
Close
,
Ke He Department of Endocrinology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China

Search for other papers by Ke He in
Google Scholar
PubMed
Close
,
Yun-Qing Zhu Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Yun-Qing Zhu in
Google Scholar
PubMed
Close
,
Bing-li Liu Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Bing-li Liu in
Google Scholar
PubMed
Close
,
Xin Cao Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Xin Cao in
Google Scholar
PubMed
Close
,
Hong Zhou Department of Immunology, Nanjing Medical University, Jiangsu, China

Search for other papers by Hong Zhou in
Google Scholar
PubMed
Close
, and
Xiao-Ming Mao Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China

Search for other papers by Xiao-Ming Mao in
Google Scholar
PubMed
Close

Objective

Thyroid nodules are usually accompanied by elevated thyroglobulin (Tg) level and autoimmune thyroid diseases (AITDs). However, the relationship between Tg and AITDs is not fully understood. Dysfunction of regulatory T cells (Tregs) plays an important role in the development of AITDs. We aimed to evaluate the effects of Tg on the function of Tregs in patients with thyroid nodules.

Methods

Tg levels and the functions of Tregs in peripheral blood and thyroid tissues of patients with thyroid nodules from Nanjing First Hospital were evaluated. The effects of Tg on the function of Tregs from healthy donors were also assessed in vitro. The function of Tregs was defined as an inhibitory effect of Tregs on the effector T cell (CD4+ CD25 T cell) proliferation rate.

Results

The level of Tg in peripheral blood correlated negatively with the inhibitory function of Tregs (R = 0.398, P = 0.03), and Tregs function declined significantly in the high Tg group (Tg >77 μg/L) compared with the normal Tg group (11.4 ± 3.9% vs 27.5 ± 3.5%, P < 0.05). Compared with peripheral blood, the function of Tregs in thyroid declined significantly (P < 0.01), but the proportion of FOXP3+ Tregs in thyroid increased (P < 0.01). High concentration of Tg (100 μg/mL) inhibited the function of Tregs and downregulated FOXP3, TGF-β and IL-10 mRNA expression in Tregs in vitro.

Conclusions

Elevated Tg level could impair the function of Tregs, which might increase the risk of AITDs in patient with thyroid nodules.

Open access
Hui-qing Yuan Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Hui-qing Yuan in
Google Scholar
PubMed
Close
,
Jia-xi Miao Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jia-xi Miao in
Google Scholar
PubMed
Close
,
Jia-ping Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jia-ping Xu in
Google Scholar
PubMed
Close
,
Su-xiang Zhu Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Su-xiang Zhu in
Google Scholar
PubMed
Close
,
Feng Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Xu in
Google Scholar
PubMed
Close
,
Xiao-hua Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xiao-hua Wang in
Google Scholar
PubMed
Close
,
Chun-hua Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chun-hua Wang in
Google Scholar
PubMed
Close
,
Chao Yu Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chao Yu in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
, and
Dong-mei Zhang Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Dong-mei Zhang in
Google Scholar
PubMed
Close

Background

Increased serum cystatin C (CysC) can predict the onset of type 2 diabetes (T2D). Meanwhile, impaired pancreatic α- and β-cell functions get involved in the pathophysiological processes of T2D. So this study was to explore the relationships between serum CysC levels and pancreatic α- and β-cell functions in T2D.

Methods

In this cross-sectional observational study, a total of 2634 patients with T2D were consecutively recruited. Each recruited patient received a serum CysC test and oral glucose tolerance test for synchronous detection of serum C-peptide and plasma glucagon. As components of pancreatic β-cell function, insulin secretion and sensitivity indices were evaluated by C-peptide area under the curve (AUC-CP) and C-peptide-substituted Matsuda’s index (Matsuda-CP), respectively. Fasting glucagon (F-GLA) and post-challenge glucagon calculated by glucagon area under the curve (AUC-GLA) were used to assess pancreatic α-cell function. These skewed indices and were further natural log-transformed (ln).

Results

With quartiles of serum CysC levels ascending, AUC-CP, F-GLA and AUC-GLA were increased, while Matsuda-CP was decreased (P for trend <0.001). Moreover, serum CysC levels were positively related to lnAUC-CP, lnF-GLA and lnAUC-GLA (r= 0.241, 0.131 and 0.208, respectively, P < 0.001), and inversely related to lnMatsuda-CP (r= –0.195, P  < 0.001). Furthermore, after controlling for other relevant variables via multivariable linear regression analysis, serum CysC levels were identified to account for lnAUC-CP (β= 0.178, t= 10.518, P  < 0.001), lnMatsuda-CP (β= –0.137, t= –7.118, P  < 0.001), lnF-GLA (β= 0.049, t= 2.263, P = 0.024) and lnAUC-GLA (β= 0.121, t= 5.730, P  < 0.001).

Conclusions

Increased serum CysC levels may be partly responsible for increased insulin secretion from β-cells, decreased systemic insulin sensitivity, and elevated fasting and postprandial glucagon secretion from α-cells in T2D.

Open access