Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Qi Sun x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Xiaohui Qi, Ping He, Huayan Yao, Huanhuan Sun, Jiying Qi, Min Cao, Bin Cui, and Guang Ning

Objective

The association between insulin therapy and the risk of biliary tract cancer (BTC) is uncertain. We aimed to assess this risk in type 2 diabetic patients.

Methods

Using electronic medical data from the Shanghai Hospital Link database, 202,557 patients with type 2 diabetes (164,997 insulin never-users and 37,560 insulin ever-users) were identified in this study between January 1, 2013, and December 31, 2016, with follow-up until December 31, 2019. By propensity score matching, an ever-user was matched with a never-user. Cox proportional hazards regression analysis was used to estimate risk ratios (HRs) and 95% CIs for three subtypes of BTC (intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer (GBC)).

Results

At a mean follow-up of 5.33 years, 143 cases of BTC were observed. The crude incidence rates (per 100,000 person-years) of ECC, ICC, and GBC in ever-users:never-users were 10.22:3.63, 2.04:2.04, and 8.17:6.01, respectively. Insulin therapy was associated with an increased risk of ECC (HR, 4.10; 95% CI, 1.54–10.92; P  = 0.005) compared to patients who never used insulin. No statistically significant results were observed for insulin and ICC/GBC. Consistent results were also found in the original cohort.

Conclusions

The relationship between insulin therapy and BTC is type-specific. Further studies are warranted to provide evidence on the identification of ECC risk groups among type 2 diabetic patients.

Open access

Qi Zhang, Hongshan Wang, Yanhong Xie, Suming Huang, Ke Chen, Botian Ye, Yupeng Yang, Jie Sun, Hongyong He, Fenglin Liu, Zhenbin Shen, Weidong Chen, Kuntang Shen, Yuan Ji, and Yihong Sun

A new subcategory, grade 3 neuroendocrine tumors, is incorporated into the grading system of pancreatic neuroendocrine neoplasms in the 2017 WHO classification in order to differentiate grade 3 neuroendocrine tumors from neuroendocrine carcinomas. The 2019 WHO classification extends the concept of grade 3 neuroendocrine tumors to gastrointestinal high-grade neuroendocrine neoplasms. However, there is still limited study focusing on the gastric grade 3 neuroendocrine tumors and gastric neuroendocrine carcinomas. We retrospectively enrolled 151 gastric high-grade neuroendocrine neoplasms patients, who underwent radical resection from January 2007 to December 2015. Clinicopathologic and prognostic features were studied. The Surveillance, Epidemiology, and End Results (SEER) database was used to verify the prognostic determinants found in the Zhongshan cohort. Neuroendocrine carcinomas showed a higher Ki67 index and higher mitotic count than grade 3 neuroendocrine tumors. We identified 109 (72.2%) patients with neuroendocrine carcinomas, 12 (7.9%) patients with grade 3 neuroendocrine tumors, and 30 (19.9%) patients with mixed neuroendocrine-non-neuroendocrine neoplasms. Although neuroendocrine carcinomas demonstrated higher Ki67 index (P = 0.004) and mitoses (P = 0.001) than grade 3 neuroendocrine tumors, their prognosis after radical resection did not demonstrate significant differences (P = 0.709). Tumor size, perineural invasion, and TNM stage were independent prognostic factors of gastric high-grade neuroendocrine neoplasms.