Search Results
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jesper Krogh in
Google Scholar
PubMed
Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Peter Plomgaard in
Google Scholar
PubMed
Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Ruth Frikke-Schmidt in
Google Scholar
PubMed
Search for other papers by Sten Velschow in
Google Scholar
PubMed
Department of Pediatrics, Copenhagen University Hospital - Herlev & Gentofte, Copenhagen, Denmark
Search for other papers by Jesper Johannesen in
Google Scholar
PubMed
Search for other papers by Linda Maria Hilsted in
Google Scholar
PubMed
Search for other papers by Malene Schrøder in
Google Scholar
PubMed
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Ulla Feldt-Rasmussen in
Google Scholar
PubMed
Repeated blood sampling is required in certain clinical and research settings, which is currently performed by drawing blood from venous catheters requiring manual handling of each sample at the time of collection. A novel body-worn device for repeated serial samples, Fluispotter®, with automated extraction, collection, and storage of up to 20 venous dried blood spot samples over the course of 20 h may overcome problems with current methods for serial sampling. The purpose of this study was to assess the performance and safety of Fluispotter for the first time in healthy subjects. Fluispotter consists of a cartridge with tubing, a reservoir for flushing solution, pumps and filterpaper, and a multi-lumen catheter placed in the brachial vein. We recruited healthy subjects for testing in an in-hospital setting. Fluispotter was attached by an anesthesiologist to 22 healthy subjects of which 9/22 (40.9%) participants had all 20 samples taken, which was lower than the goal of complete sampling in 80% of the subjects (P = 0.02). The main reason for sample failure was clogging of blood flow which was observed in 11/22 (50%) of the participants. No serious adverse events occurred, and the participants rated the pain from the insertion and the removal of catheter as very low. A cortisol profile showed nadir values at midnight and highest values at 05:00 h. Although full sampling was not successful in all participants, the Fluispotter technology proved safe and highly acceptable to the participants producing the expected cortisol profile without the requirement of staff during sample collection.
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Ulrik Ø Andersen in
Google Scholar
PubMed
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Dijana Terzic in
Google Scholar
PubMed
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Nicolai Jacob Wewer Albrechtsen in
Google Scholar
PubMed
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Peter Dall Mark in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Peter Plomgaard in
Google Scholar
PubMed
Search for other papers by Jens F Rehfeld in
Google Scholar
PubMed
Search for other papers by Finn Gustafsson in
Google Scholar
PubMed
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jens P Goetze in
Google Scholar
PubMed
Aims
Neprilysin degrades natriuretic peptides in circulation and is also suggested to degrade the gut hormones gastrin and cholecystokinin. Neprilysin inhibition has become a therapeutic strategy and thus a regimen in need of further testing in terms of other hormonal axes besides natriuretic peptides. The aim of this study was to examine whether acute inhibition of neprilysin affects meal-induced responses in gastrin and cholecystokinin concentrations in healthy individuals.
Methods and results
Nine healthy young men were included in an open-labelled, randomized cross-over clinical trial. The participants received a standardized meal (25 g fat, 26 g protein, 42 g carbohydrate) on two separate days with or without a one-time dosage of sacubitril ((194 mg)/valsartan (206 mg)). Blood pressure, heart rate and blood samples were measured and collected during the experiment. Statistical differences between groups were assessed using area under the curve together with an ANOVA with a Bonferroni post hoc test. Sacubitril/valsartan increased the postprandial plasma concentrations of both gastrin and cholecystokinin (80% (AUC0-270 min, P = 0.004) and 60% (AUC0-270 min, P = 0.003), respectively) compared with the control meal. No significant hemodynamic effects were noted (blood pressure, AUC0-270 min, P = 0.86, heart rate, AUC0-270 min, P = 0.96).
Conclusion
Our study demonstrates that sacubitril/valsartan increases the postprandial plasma concentrations of gastrin and cholecystokinin in healthy individuals. The results thus suggest that neprilysin-mediated degradation of gastrin and cholecystokinin is physiologically relevant and may have a role in heart failure patients treated with sacubitril/valsartan.