Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Peter D Mark x
Clear All Modify Search
Peter D Mark Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark

Search for other papers by Peter D Mark in
Google Scholar
PubMed
Close
,
Mikkel Andreassen Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark

Search for other papers by Mikkel Andreassen in
Google Scholar
PubMed
Close
,
Claus L Petersen Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark
Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark

Search for other papers by Claus L Petersen in
Google Scholar
PubMed
Close
,
Andreas Kjaer Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark
Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark

Search for other papers by Andreas Kjaer in
Google Scholar
PubMed
Close
, and
Jens Faber Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark
Department of Medicine O, Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Physiology, Faculty of Health Sciences, Center for Functional and Diagnostic Imaging and Research, Centre of Endocrinology and Metabolism, Herlev University Hospital, Herlev Ringvej 75, Herlev DK‐2730, Denmark

Search for other papers by Jens Faber in
Google Scholar
PubMed
Close

Purpose

The aim of this study was to investigate structure and function of the heart in subclinical hyperthyroidism (SH) before and after obtaining euthyroidism by radioactive iodine treatment, using high precision and observer-independent magnetic resonance imaging (MRI) technology.

Methods

Cardiac MRI was performed before and after euthyroidism was obtained by radioactive iodine treatment in 12 otherwise healthy patients (11 women and one man, mean age 59 years, range 44–71 years) with a nodular goiter and SH, and compared with eight healthy controls investigated at baseline. Cardiac data were expressed as an index, as per body surface area, except for heart rate (HR) and ejection fraction.

Results

Post-treatment cardiac MRI was performed in median 139 days after a normalized serum TSH value had been recorded. During treatment, serum TSH increased from (median (range)) 0.01 (0.01–0.09) to 0.88 (0.27–3.99) mU/l. Patients with untreated SH had increased resting HR (P<0.01) as well as cardiac index (cardiac output as per body surface area) (P<0.01) compared with controls. Obtaining euthyroidism resulted in a significant decrease in left ventricular mass index (LVMI) of 2.7 g/m2 (P=0.034), in HR of 8 bpm (P=0.001), and in cardiac index of 0.24 l/min per m2 (P=0.017).

Conclusions

Normalization of thyroid function by radioactive iodine treatment of SH resulted in significant reductions in clinically important heart parameters such as LVMI, HR, and cardiac index. SH should be regarded as a condition in which aggressive treatment should be considered to protect cardiac function.

Open access