Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Peng Zhu x
  • All content x
Clear All Modify Search
Open access

Beibei Zhu, Yan Han, Fen Deng, Kun Huang, Shuangqin Yan, Jiahu Hao, Peng Zhu, and Fangbiao Tao

Objectives: Compared with other thyroid markers, fewer studies explored the associations between triiodothyronine (T3) and T3/free thyroxine (fT4) and glucose abnormality during pregnancy. Thus, we aimed to: (1) examine the associations of T3 and T3/fT4 with glucose metabolism indicators; and (2) evaluate, in the first trimester, the performance of the two markers as predictors of gestational diabetes mellitus (GDM) risk.

Methods: Longitudinal data from 2723 individuals, consisting of three repeated measurements of T3 and fT4, from the Man’anshan birth cohort study (MABC), China, were analyzed using a time-specific generalized estimating equation (GEE). The receiver operating characteristic curve (ROC) - area under the curve (AUC) and Hosmer-Lemeshow goodness of fit test were used to assess the discrimination and calibration of prediction models.

Results: T3 and T3/fT4 presented stable associations with the level of fasting glucose, glucose at 1h/2h across pregnancy. T3 and T3/fT4 in both the first and second trimesters were positively associated with the risk of GDM, with the larger magnitude of association observed in the second trimester (Odds ratio (OR) = 2.50, 95%CI = 1.95, 3.21 for T3; OR = 1.09, 95%CI = 1.07, 1.12 for T3/fT4). T3 ((AUC) = 0.726, 95%CI = 0.698, 0.754) and T3/fT4 (AUC = 0.724, 95%CI = 0.696, 0.753) in the first trimester could improve the performance of the predicting model; however, the overall performance is not good.

Conclusion: Significant and stable associations of T3, T3/fT4 and glucose metabolism indicators were documented. Both T3 and T3/fT4 improve the performance of the GDM predictive model.

Open access

Lu Liu, Chunyan Li, Peng Yang, Jian Zhu, Dongmei Gan, Le Bu, Manna Zhang, Chunjun Sheng, Hong Li, and Shen Qu

Alendronate (ALN) is a commonly used drug for the treatment of osteoporosis. Atypical femur fractures (AFFs) have been associated with long-term use of ALN and have recently become the subject of considerable attention as ALN use increases. This meta-analysis aimed to determine the relationship between ALN and AFF. The Embase, PubMed, and Cochrane library databases were searched for relevant studies published before November 6, 2014. Studies clearly reporting the relationship between ALN and AFF were selected for our analysis. From these results, the relationship between ALN and AFF was analyzed. Weighted mean differences were calculated using a random-effects model. Five studies were included in this meta-analysis. The results revealed that the use of ALN will not increase the risk of AFF in short term (P>0.05), but there will be a risk of AFF (P<0.05) with long-term (>5 years) use of ALN. These findings indicate that long-term use of ALN is a risk factor for AFF and that more attention should be paid to the clinical applications of ALN.

Open access

Yun Hu, Na Li, Peng Jiang, Liang Cheng, Bo Ding, Xiao-Mei Liu, Ke He, Yun-Qing Zhu, Bing-li Liu, Xin Cao, Hong Zhou, and Xiao-Ming Mao

Objective

Thyroid nodules are usually accompanied by elevated thyroglobulin (Tg) level and autoimmune thyroid diseases (AITDs). However, the relationship between Tg and AITDs is not fully understood. Dysfunction of regulatory T cells (Tregs) plays an important role in the development of AITDs. We aimed to evaluate the effects of Tg on the function of Tregs in patients with thyroid nodules.

Methods

Tg levels and the functions of Tregs in peripheral blood and thyroid tissues of patients with thyroid nodules from Nanjing First Hospital were evaluated. The effects of Tg on the function of Tregs from healthy donors were also assessed in vitro. The function of Tregs was defined as an inhibitory effect of Tregs on the effector T cell (CD4+ CD25 T cell) proliferation rate.

Results

The level of Tg in peripheral blood correlated negatively with the inhibitory function of Tregs (R = 0.398, P = 0.03), and Tregs function declined significantly in the high Tg group (Tg >77 μg/L) compared with the normal Tg group (11.4 ± 3.9% vs 27.5 ± 3.5%, P < 0.05). Compared with peripheral blood, the function of Tregs in thyroid declined significantly (P < 0.01), but the proportion of FOXP3+ Tregs in thyroid increased (P < 0.01). High concentration of Tg (100 μg/mL) inhibited the function of Tregs and downregulated FOXP3, TGF-β and IL-10 mRNA expression in Tregs in vitro.

Conclusions

Elevated Tg level could impair the function of Tregs, which might increase the risk of AITDs in patient with thyroid nodules.

Open access

Chenghao Piao, Xiaojie Wang, Shiqiao Peng, Xinyu Guo, Hui Zhao, Li He, Yan Zeng, Fan Zhang, Kewen Zhu, and Yiwei Wang

Objective

Gestational diabetes mellitus (GDM) is characterized by glucose intolerance during gestation. It is associated with a series of maternal and foetal complications. Interleukin (IL)-34 is a recently discovered pro-inflammatory cytokine that functions as a ligand for colony-stimulating factor-1 receptor (CSF-1R). The contribution of IL-34 in the development of multiple chronic inflammatory diseases and autoimmune diseases has been recently discovered. The aim of this study was to evaluate whether IL-34 participates in the pathogenesis of GDM.

Method

A total of 120 women were enrolled in this study, which included 60 GDM patients and age- and sex-matched healthy pregnant women. The expression of IL-34 in serum, cord blood and placental tissues was analysed by ELISA and Western blot assays. The association between IL-34 levels and clinical features was also studied. We additionally evaluated the effect of recombinant mouse IL-34 (rmIL-34) on apoptosis and pancreatic β cell function.

Results

We found that IL-34 expression is highly increased in serum, cord blood and placental tissues in patients with GDM. In addition, there was a positive association between serum IL-34 and insulin resistance and glucose concentrations. Our data also revealed that IL-34 contributes to the apoptosis of pancreatic β cells in GDM caused by CSF-1R. Furthermore, functional studies found that IL-34 inhibited pancreatic β cell function and cell viability, while CSF-1R inhibitor blocked this effect.

Conclusion

IL-34 plays a crucial role in the development of GDM by targeting CSF-1R, insulin production and β cell function.