Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Paul J Newey x
Clear All Modify Search
Open access

Enrique Soto-Pedre, Paul J Newey, John S Bevan and Graham P Leese

Purpose

High serum prolactin concentrations have been associated with adverse health outcomes in some but not all studies. This study aimed to examine the morbidity and all-cause mortality associated with hyperprolactinaemia.

Methods

A population-based matched cohort study in Tayside (Scotland, UK) from 1988 to 2014 was performed. Record-linkage technology was used to identify patients with hyperprolactinaemia that were compared to an age–sex-matched cohort of patients free of hyperprolactinaemia. The number of deaths and incident admissions with diabetes mellitus, cardiovascular disease, cancer, breast cancer, bone fractures and infectious conditions were compared by the survival analysis.

Results

Patients with hyperprolactinaemia related to pituitary tumours had no increased risk of diabetes, cardiovascular disease, bone fractures, all-cause cancer or breast cancer. Whilst no increased mortality was observed in patients with pituitary microadenomas (HR = 1.65, 95% CI: 0.79–3.44), other subgroups including those with pituitary macroadenomas and drug-induced and idiopathic hyperprolactinaemia demonstrated an increased risk of death. Individuals with drug-induced hyperprolactinaemia also demonstrated increased risks of diabetes, cardiovascular disease, infectious disease and bone fracture. However, these increased risks were not associated with the degree of serum prolactin elevation (P trend > 0.3). No increased risk of cancer was observed in any subgroup.

Conclusions

No excess morbidity was observed in patients with raised prolactin due to pituitary tumours. Although the increased morbidity and mortality associated with defined patient subgroups are unlikely to be directly related to the elevation in serum prolactin, hyperprolactinaemia might act as a biomarker for the presence of some increased disease risk in these patients.

Open access

Kate E Lines, Mahsa Javid, Anita A C Reed, Gerard V Walls, Mark Stevenson, Michelle Simon, Kreepa G Kooblall, Sian E Piret, Paul T Christie, Paul J Newey, Ann-Marie Mallon and Rajesh V Thakker

Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5–26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1.