Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Outi Mäkitie x
  • All content x
Clear All Modify Search
Open access

Alice Costantini, Mari H Muurinen, and Outi Mäkitie

In the last decade, the widespread use of massively-parallel sequencing has considerably boosted the number of novel gene discoveries in monogenic skeletal diseases with short stature. Defects in genes playing a role in the maintenance and function of the growth plate, the site of longitudinal bone growth, are a well-known cause of skeletal diseases with short stature. However, several genes involved in extracellular matrix composition or maintenance as well as genes partaking in various biological processes have also been characterized. This review aims to describe the latest genetic findings in spondyloepiphyseal and spondyloepimetaphyseal dysplasias and in some monogenic forms of isolated short stature. Strategies on how to successfully characterize novel skeletal phenotypes with short stature and genetic approaches to detect and validate novel gene-disease correlations will be discussed in detail. Finally, novel genetic mechanisms in the field of skeletal diseases, including variants affecting miRNAs and disrupting the chromatin structure, will be described. In summary, we discuss the latest gene discoveries underlying skeletal diseases with short stature and emphasize the importance of characterizing novel molecular mechanisms for genetic counseling, optimal management of the disease and for therapeutic innovations.

Open access

Elisabet Einarsdottir, Minna Pekkinen, Kaarel Krjutškov, Shintaro Katayama, Juha Kere, Outi Mäkitie, and Heli Viljakainen

Objective

The effect of vitamin D at the transcriptome level is poorly understood, and furthermore, it is unclear if it differs between obese and normal-weight subjects. The objective of the study was to explore the transcriptome effects of vitamin D supplementation.

Design and methods

We analysed peripheral blood gene expression using GlobinLock oligonucleotides followed by RNA sequencing in individuals participating in a 12-week randomised double-blinded placebo-controlled vitamin D intervention study. The study involved 18 obese and 18 normal-weight subjects (of which 20 males) with mean (±s.d.) age 20.4 (±2.5) years and BMIs 36 (±10) and 23 (±4) kg/m2, respectively. The supplemental daily vitamin D dose was 50 µg (2000 IU). Data were available at baseline, 6- and 12-week time points and comparisons were performed between the vitamin D and placebo groups separately in obese and normal-weight subjects.

Results

Significant transcriptomic changes were observed at 6 weeks, and only in the obese subjects: 1724 genes were significantly upregulated and 186 genes were downregulated in the vitamin D group compared with placebo. Further analyses showed several enriched gene categories connected to mitochondrial function and metabolism, and the most significantly enriched pathway was related to oxidative phosphorylation (adjusted P value 3.08 × 10−14). Taken together, our data suggest an effect of vitamin D supplementation on mitochondrial function in obese subjects.

Conclusions

Vitamin D supplementation affects gene expression in obese, but not in normal-weight subjects. The altered genes are enriched in pathways related to mitochondrial function. The present study increases the understanding of the effects of vitamin D at the transcriptome level.