Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Mi-Hyeon You x
  • All content x
Clear All Modify Search
Open access

Meihua Jin, Woo Kyung Lee, Mi-Hyeon You, Ahreum Jang, Sheue-yann Cheng, Won Gu Kim, Min Ji Jeon, and Yu-Mi Lee

Background

Catabolism of serine via serine hydroxymethyltransferase2 (SHMT2) through the mitochondrial one-carbon unit pathway is important in tumorigenesis. Therefore, SHMT2 may play a role in thyroid cancer.

Methods

Thyroid tissue samples and The Cancer Genome Atlas (TCGA) database were used to evaluate SHMT2 expression in thyroid tissues and the association with clinical outcomes.

Results

SHMT2 protein expression was evaluated in thyroid tissues consisting of 52 benign nodules, 129 papillary thyroid carcinomas (PTC) and matched normal samples, and 20 anaplastic thyroid carcinomas (ATC). ATCs presented the highest (95.0%) positivity of SMHT2 protein expression. PTCs showed the second highest (73.6%) positivity of SHMT2 expression, which was significantly higher than that of benign nodules (19.2%, P = 0.016) and normal thyroid tissues (0%, P < 0.001). Analysis of TCGA data showed that SHMT2 messenger RNA (mRNA) expression was significantly higher in tumors than in normal tissues (P < 0.001). When we classified thyroid cancer into high and low groups according to SHMT2 mRNA expression levels, the thyroid differentiation score for the high SHMT2 group was significantly lower than that of the low SHMT2 group (P < 0.001). There was also a significant correlation between SHMT2 mRNA expression and the stemness index (r = 0.41, P < 0.001). The high SHMT2 group had more advanced TNM stages and shorter progression-free survival rates than the low SHMT2 group (P < 0.01 and P = 0.007, respectively).

Conclusion

SHMT2 expression is higher in thyroid cancers than normal or benign tissues and is associated with de-differentiation and poor clinical outcomes. Thus, SHMT2 might be useful as a diagnostic and prognostic marker for thyroid cancer.