Search Results
Search for other papers by Silvia Ciancia in
Google Scholar
PubMed
Search for other papers by Vanessa Dubois in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Both in the United States and Europe, the number of minors who present at transgender healthcare services before the onset of puberty is rapidly expanding. Many of those who will have persistent gender dysphoria at the onset of puberty will pursue long-term puberty suppression before reaching the appropriate age to start using gender-affirming hormones. Exposure to pubertal sex steroids is thus significantly deferred in these individuals. Puberty is a critical period for bone development: increasing concentrations of estrogens and androgens (directly or after aromatization to estrogens) promote progressive bone growth and mineralization and induce sexually dimorphic skeletal changes. As a consequence, safety concerns regarding bone development and increased future fracture risk in transgender youth have been raised. We here review published data on bone development in transgender adolescents, focusing in particular on differences in age and pubertal stage at the start of puberty suppression, chosen strategy to block puberty progression, duration of puberty suppression, and the timing of re-evaluation after estradiol or testosterone administration. Results consistently indicate a negative impact of long-term puberty suppression on bone mineral density, especially at the lumbar spine, which is only partially restored after sex steroid administration. Trans girls are more vulnerable than trans boys for compromised bone health. Behavioral health measures that can promote bone mineralization, such as weight-bearing exercise and calcium and vitamin D supplementation, are strongly recommended in transgender youth, during the phase of puberty suppression and thereafter.
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jakob Albrethsen in
Google Scholar
PubMed
Search for other papers by Vassos Neocleous in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
Pediatric Endocrinology Clinic, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
Search for other papers by Meropi Toumba in
Google Scholar
PubMed
Search for other papers by Pavlos Fanis in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Congenital adrenal hyperplasia (CAH) is a recessive condition that affects the adrenal glands. Despite life-long replacement therapy with glucocorticoids and mineralocorticoids, adult patients with CAH often experience impaired gonadal function. In pubertal boys and in men with CAH, circulating testosterone is produced by the adrenal glands as well as the testicular, steroidogenic cells. In this European two-center study, we evaluated the function of Leydig and Sertoli cells in 61 boys and men with CAH, primarily due to 21-hydroxylase deficiency. Despite conventional hormone replacement therapy, our results indicated a significant reduction in serum concentrations of both Leydig cell-derived hormones (i.e. insulin-like factor 3 (INSL3) and testosterone) and Sertoli cell-derived hormones (i.e. inhibin B and anti-Müllerian hormone) in adult males with CAH. Serum concentrations of INSL3 were particularly reduced in those with testicular adrenal rest tumors. To our knowledge, this is the first study to evaluate circulating INSL3 as a candidate biomarker to monitor Leydig cell function in patients with CAH.
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Search for other papers by Jillian Bryce in
Google Scholar
PubMed
Search for other papers by Salma R Ali in
Google Scholar
PubMed
Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
Search for other papers by Roberta Giordano in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Irina Chifu in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Erica LT van den Akker in
Google Scholar
PubMed
Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Search for other papers by Natasha M Appelman-Dijkstra in
Google Scholar
PubMed
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Guglielmo Beccuti in
Google Scholar
PubMed
Search for other papers by Ian L Ross in
Google Scholar
PubMed
Search for other papers by Simona Grozinsky-Glasberg in
Google Scholar
PubMed
Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Department of Medicine, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Search for other papers by Stefanie Hahner in
Google Scholar
PubMed
Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Background
Information on clinical outcomes of coronavirus disease 19 (COVID-19) infection in patients with adrenal disorders is scarce.
Methods
A collaboration between the European Society of Endocrinology (ESE) Rare Disease Committee and European Reference Network on Rare Endocrine Conditions via the European Registries for Rare Endocrine Conditions allowed the collection of data on 64 cases (57 adrenal insufficiency (AI), 7 Cushing’s syndrome) that had been reported by 12 centres in 8 European countries between January 2020 and December 2021.
Results
Of all 64 patients, 23 were males and 41 females (13 of those children) with a median age of 37 and 51 years. In 45/57 (95%) AI cases, COVID-19 infection was confirmed by testing. Primary insufficiency was present in 45/57 patients; 19 were affected by Addison’s disease, 19 by congenital adrenal hyperplasia and 7 by primary AI (PAI) due to other causes. The most relevant comorbidities were hypertension (12%), obesity (n = 14%) and diabetes mellitus (9%). An increase by a median of 2.0 (IQR 1.4) times the daily replacement dose was reported in 42 (74%) patients. Two patients were administered i.m. injection of 100 mg hydrocortisone, and 11/64 were admitted to the hospital. Two patients had to be transferred to the intensive care unit, one with a fatal outcome. Four patients reported persistent SARS-CoV-2 infection, all others complete remission.
Conclusion
This European multicentre questionnaire is the first to collect data on the outcome of COVID-19 infection in patients with adrenal gland disorders. It suggests good clinical outcomes in case of duly dose adjustments and emphasizes the importance of patient education on sick day rules.
Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Stamatina Ioakim in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Silvia Andonova in
Google Scholar
PubMed
Search for other papers by Magdalena Avbelj-Stefanija in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Jerome Bouligand in
Google Scholar
PubMed
Search for other papers by Hennie T Bruggenwirth in
Google Scholar
PubMed
Search for other papers by Justin H Davies in
Google Scholar
PubMed
Search for other papers by Elfride De Baere in
Google Scholar
PubMed
Search for other papers by Iveta Dzivite-Krisane in
Google Scholar
PubMed
Search for other papers by Paula Fernandez-Alvarez in
Google Scholar
PubMed
Search for other papers by Alexander Gheldof in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by Claudia Giavoli in
Google Scholar
PubMed
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Csilla Krausz in
Google Scholar
PubMed
Search for other papers by Kristina Lagerstedt-Robinson in
Google Scholar
PubMed
West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom
Search for other papers by Ruth McGowan in
Google Scholar
PubMed
Search for other papers by Uta Neumann in
Google Scholar
PubMed
Search for other papers by Antonio Novelli in
Google Scholar
PubMed
Search for other papers by Xavier Peyrassol in
Google Scholar
PubMed
Search for other papers by Leonidas A Phylactou in
Google Scholar
PubMed
Search for other papers by Julia Rohayem in
Google Scholar
PubMed
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by Dineke Westra in
Google Scholar
PubMed
Search for other papers by Valeria Vezzoli in
Google Scholar
PubMed
Search for other papers by Raffaella Rossetti in
Google Scholar
PubMed
Differences of sex development and maturation (SDM) represent a heterogeneous puzzle of rare conditions with a large genetic component whose management and treatment could be improved by an accurate classification of underlying molecular conditions, and next-generation sequencing (NGS) should represent the most appropriate approach. Therefore, we conducted a survey dedicated to the use and potential outcomes of NGS for SDM disorders diagnosis among the 53 health care providers (HCP) of the European Reference Network for rare endocrine conditions. The response rate was 49% with a total of 26 HCPs from 13 countries. All HCPs, except 1, performed NGS investigations for SDM disorders on 6720 patients, 3764 (56%) with differences of sex development (DSD), including 811 unexplained primary ovarian insufficiency, and 2956 (44%) with congenital hypogonadotropic hypogonadism (CHH). The approaches varied from targeted analysis of custom gene panels (range: 11–490 genes) in 81.5% of cases or whole exome sequencing with the extraction of a virtual panel in the remaining cases. These analyses were performed for diagnostic purposes in 21 HCPs, supported by the National Health Systems in 16 cases. The likelihood of finding a variant ranged between 7 and 60%, mainly depending upon the number of analysed genes or criteria used for reporting, most HCPs also reporting variants of uncertain significance. These data illustrate the status of genetic diagnosis of DSD and CHH across Europe. In most countries, these analyses are performed for diagnostic purposes, yielding highly variable results, thus suggesting the need for harmonization and general improvements of NGS approaches.