Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Martin Bidlingmaier x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Maximilian Bielohuby, Martin Bidlingmaier, and Uwe Schwahn

The measurement of circulating hormones by immunoassay remains a cornerstone in preclinical endocrine research. For scientists conducting and interpreting immunoassay measurements of rodent samples, the paramount aim usually is to obtain reliable and meaningful measurement data in order to draw conclusions on biological processes. However, the biological variability between samples is not the only variable affecting the readout of an immunoassay measurement and a considerable amount of unwanted or unintended variability can be quickly introduced during the pre-analytical and analytical phase. This review aims to increase the awareness for the factors ‘pre-analytical’ and ‘analytical’ variability particularly in the context of immunoassay measurement of circulating metabolic hormones in rodent samples. In addition, guidance is provided how to gain control over these variables and how to avoid common pitfalls associated with sample collection, processing, storage and measurement. Furthermore, recommendations are given on how to perform a basic validation of novel single and multiplex immunoassays for the measurement of metabolic hormones in rodents. Finally, practical examples from immunoassay measurements of plasma insulin in mice address the factors ‘sampling site and inhalation anesthesia’ as frequent sources of introducing an unwanted variability during the pre-analytical phase. The knowledge about the influence of both types of variability on the immunoassay measurement of circulating hormones as well as strategies to control these variables are crucial, on the one hand, for planning and realization of metabolic rodent studies and, on the other hand, for the generation and interpretation of meaningful immunoassay data from rodent samples.

Open access

Martin Bidlingmaier, Helena Gleeson, Ana-Claudia Latronico, and Martin O Savage

Precision medicine employs digital tools and knowledge of a patient’s genetic makeup, environment and lifestyle to improve diagnostic accuracy and to develop individualised treatment and prevention strategies. Precision medicine has improved management in a number of disease areas, most notably in oncology, and it has the potential to positively impact others, including endocrine disorders. The accuracy of diagnosis in young patients with growth disorders can be improved by using biomarkers. Insulin-like growth factor I (IGF-I) is the most widely accepted biomarker of growth hormone secretion, but its predictive value for recombinant human growth hormone treatment response is modest and various factors can affect the accuracy of IGF-I measurements. These factors need to be taken into account when considering IGF-I as a component of precision medicine in the management of growth hormone deficiency. The use of genetic analyses can assist with diagnosis by confirming the aetiology, facilitate treatment decisions, guide counselling and allow prompt intervention in children with pubertal disorders, such as central precocious puberty and testotoxicosis. Precision medicine has also proven useful during the transition of young people with endocrine disorders from paediatric to adult services when patients are at heightened risk of dropping out from medical care. An understanding of the likelihood of ongoing GH deficiency, using tools such as MRI, detailed patient history and IGF-I levels, can assist in determining the need for continued recombinant human growth hormone treatment during the process of transitional care.

Open access

Gudmundur Johannsson, Martin Bidlingmaier, Beverly M K Biller, Margaret Boguszewski, Felipe F Casanueva, Philippe Chanson, Peter E Clayton, Catherine S Choong, David Clemmons, Mehul Dattani, Jan Frystyk, Ken Ho, Andrew R Hoffman, Reiko Horikawa, Anders Juul, John J Kopchick, Xiaoping Luo, Sebastian Neggers, Irene Netchine, Daniel S Olsson, Sally Radovick, Ron Rosenfeld, Richard J Ross, Katharina Schilbach, Paulo Solberg, Christian Strasburger, Peter Trainer, Kevin C J Yuen, Kerstin Wickstrom, Jens O L Jorgensen, and on behalf of the Growth Hormone Research Society


The Growth Hormone Research Society (GRS) convened a Workshop in 2017 to evaluate clinical endpoints, surrogate endpoints and biomarkers during GH treatment of children and adults and in patients with acromegaly.


GRS invited 34 international experts including clinicians, basic scientists, a regulatory scientist and physicians from the pharmaceutical industry.


Current literature was reviewed and expert opinion was utilized to establish the state of the art and identify current gaps and unmet needs.

Consensus process

Following plenary presentations, breakout groups discussed questions framed by the planning committee. The attendees re-convened after each breakout session to share the group reports. A writing team compiled the breakout session reports into a document that was subsequently discussed and revised by participants. This was edited further and circulated for final review after the meeting. Participants from pharmaceutical companies were not part of the writing process.


The clinical endpoint in paediatric GH treatment is adult height with height velocity as a surrogate endpoint. Increased life expectancy is the ideal but unfeasible clinical endpoint of GH treatment in adult GH-deficient patients (GHDA) and in patients with acromegaly. The pragmatic clinical endpoints in GHDA include normalization of body composition and quality of life, whereas symptom relief and reversal of comorbidities are used in acromegaly. Serum IGF-I is widely used as a biomarker, even though it correlates weakly with clinical endpoints in GH treatment, whereas in acromegaly, normalization of IGF-I may be related to improvement in mortality. There is an unmet need for novel biomarkers that capture the pleiotropic actions of GH in relation to GH treatment and in patients with acromegaly.