Search Results
Search for other papers by Marek Niedziela in
Google Scholar
PubMed
The term 'hyperthyroidism' refers to a form of thyrotoxicosis due to inappropriate high synthesis and secretion of thyroid hormone(s) by the thyroid. The leading cause of hyperthyroidism in adolescents is Graves’ disease (GD); however, one should also consider other potential causes, such as toxic nodular goitre (single or multinodular), and other rare disorders leading to excessive production and release of thyroid hormones. The term 'thyrotoxicosis' refers to a clinical state resulting from inappropriate high thyroid hormone action in tissues, generally due to inappropriate high tissue thyroid hormone levels. Thyrotoxicosis is a condition with multiple aetiologies, manifestations, and potential modes of therapy. By definition, the extrathyroidal sources of excessive amounts of thyroid hormones, such as iatrogenic thyrotoxicosis, factitious ingestion of thyroid hormone, or struma ovarii, do not include hyperthyroidism. The aetiology of hyperthyroidism/and thyrotoxicosis should be determined. Although the diagnosis is apparent based on the clinical presentation and initial biochemical evaluation, additional diagnostic testing is indicated. This testing should include: (1) measurement of thyroid-stimulating hormone receptor (TSHR) antibodies (TRAb); (2) analysis of thyroidal echogenicity and blood flow on ultrasonography; or (3) determination of radioactive iodine uptake (RAIU). A 123I or 99mTc pertechnetate scan is recommended when the clinical presentation suggests toxic nodular goitre. A question arises regarding whether diagnostic workup and treatment (antithyroid drugs, radioiodine, surgery, and others) should be the same in children and adolescents as in adults, as well as whether there are the same goals of treatment in adolescents as in adults, in female patients vs in male patients, and in reproductive or in postreproductive age. In this aspect, different treatment modalities might be preferred to achieve euthyroidism and to avoid potential risks from the treatment. The vast majority of patients with thyroid disorders require life-long treatment; therefore, the collaboration of different specialists is warranted to achieve these goals and improve patients’ quality of life.
Search for other papers by Zofia Kolesinska in
Google Scholar
PubMed
Search for other papers by James Acierno Jr in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Cheng Xu in
Google Scholar
PubMed
Search for other papers by Karina Kapczuk in
Google Scholar
PubMed
Search for other papers by Anna Skorczyk-Werner in
Google Scholar
PubMed
Search for other papers by Hanna Mikos in
Google Scholar
PubMed
Search for other papers by Aleksandra Rojek in
Google Scholar
PubMed
Search for other papers by Andreas Massouras in
Google Scholar
PubMed
Search for other papers by Maciej R Krawczynski in
Google Scholar
PubMed
Search for other papers by Nelly Pitteloud in
Google Scholar
PubMed
Search for other papers by Marek Niedziela in
Google Scholar
PubMed
46,XY differences and/or disorders of sex development (DSD) are clinically and genetically heterogeneous conditions. Although complete androgen insensitivity syndrome has a strong genotype–phenotype correlation, the other types of 46,XY DSD are less well defined, and thus, the precise diagnosis is challenging. This study focused on comparing the relationship between clinical assessment and genetic findings in a cohort of well-phenotyped patients with 46,XY DSD. The study was an analysis of clinical investigations followed by genetic testing performed on 35 patients presenting to a single center. The clinical assessment included external masculinization score (EMS), endocrine profiling and radiological evaluation. Array-comparative genomic hybridization (array-CGH) and sequencing of DSD-related genes were performed. Using an integrated approach, reaching the definitive diagnosis was possible in 12 children. The correlation between clinical and genetic findings was higher in patients with a more severe phenotype (median EMS 2.5 vs 6; P = 0.04). However, in 13 children, at least one variant of uncertain significance was identified, and most times this variant did not correspond to the original clinical diagnosis. In three patients, the genetic studies guided further clinical assessment which resulted in a reclassification of initial clinical diagnosis. Furthermore, we identified eight patients harboring variants in more than one DSD genes, which was not seen in controls (2.5%; P = 0.0003). In summary, taking into account potential challenges in reaching the definitive diagnosis in 46,XY DSD, only integrated approach seems to be the best routine practice.