Search Results
St Michael's Hospital, Metabolism Laboratory, School of Medicine and Medical Sciences, Dún Laoghaire, Dublin, Ireland
St Michael's Hospital, Metabolism Laboratory, School of Medicine and Medical Sciences, Dún Laoghaire, Dublin, Ireland
Search for other papers by Malachi J McKenna in
Google Scholar
PubMed
Search for other papers by Barbara F Murray in
Google Scholar
PubMed
Objective
The recommended daily intakes of vitamin D according to the recent Clinical Practice Guideline (CPG) of the Endocrine Society are three- to fivefold higher than the Institute of Medicine (IOM) report. We speculated that these differences could be explained by different mathematical approaches to the vitamin D dose response.
Methods
Studies were selected if the daily dose was ≤2000 IU/day, the duration exceeded 3 months, and 25-hydroxyvitamin D (25OHD) concentrations were measured at baseline and post-therapy. The rate constant was estimated according to the CPG approach. The achieved 25OHD result was estimated according to the following: i) the regression equation approach of the IOM; ii) the regression approach of the Vitamin D Supplementation in Older Subjects (ViDOS) study; and iii) the CPG approach using a rate constant of 2.5 (CPG2.5) and a rate constant of 5.0 (CPG5.0). The difference between the expected and the observed 25OHD result was expressed as a percentage of observed and analyzed for significance against a value of 0% for the four groups.
Results
Forty-one studies were analyzed. The mean (95% CI) rate constant was 5.3 (4.4–6.2) nmol/l per 100 IU per day, on average twofold higher than the CPG rate constant. The mean (95% CI) for the difference between the expected and observed expressed as a percentage of observed was as follows: i) IOM, −7 (−16,+2)% (t=1.64, P=0.110); ii) ViDOS, +2 (−8,+12)% (t=0.40, P=0.69); iii) CPG2.5, −21 (−27,−15)% (t=7.2, P<0.0001); and iv) CPG5.0+3 (−4,+10)% (t=0.91, P=0.366).
Conclusion
The CPG ‘rule of thumb’ should be doubled to 5.0 nmol/l (2.0 ng/ml) per 100 IU per day, adopting a more risk-averse position.
Metabolism Laboratory, Department of Endocrinology, School of Medicine and Medical Sciences, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
Metabolism Laboratory, Department of Endocrinology, School of Medicine and Medical Sciences, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
Search for other papers by Malachi J McKenna in
Google Scholar
PubMed
Search for other papers by Barbara F Murray in
Google Scholar
PubMed
Search for other papers by Myra O'Keane in
Google Scholar
PubMed
Search for other papers by Mark T Kilbane in
Google Scholar
PubMed
Background
The Institute of Medicine 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D specified higher intakes for all age groups compared to the 1997 report, but also cautioned against spurious claims about an epidemic of vitamin D deficiency and against advocates of higher intake requirements. Over 40 years, we have noted marked improvement in vitamin D status but we are concerned about hypervitaminosis D.
Objective
We sought to evaluate the 25-hydroxyvitamin D (25OHD) trend over 20 years.
Design
We retrieved all results of serum 25OHD from 1993 to 2013 (n=69 012) that was trimmed to one sample per person (n=43 782). We conducted a time series analysis of the monthly averages for 25OHD using a simple sequence chart and a running median smoothing function. We modelled the data using univariate auto-regressive integrated moving average (ARIMA) and forecast 25OHD levels up to 2016.
Results
The time series sequence chart and smoother function demonstrated a steady upward trend with seasonality. The yearly average 25OHD increased from 36.1 nmol/l in 1993 to 57.3 nmol/l in 2013. The ARIMA model was a good fit for the 25OHD time series; it forecasted monthly average 25OHD up to the end of 2016 with a positive stationary R 2 of 0.377.
Conclusions
Vitamin D status improved over the past 40 years, but there remains a dual problem: there are groups at risk of vitamin D deficiency who need public health preventative measures; on the other hand, random members of the population are taking unnecessarily high vitamin D intakes for unsubstantiated claims.