Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M Denise Robertson x
Clear All Modify Search
Cheryl M Isherwood Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by Cheryl M Isherwood in
Google Scholar
PubMed
Close
,
M Denise Robertson Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Close
,
Debra J Skene Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by Debra J Skene in
Google Scholar
PubMed
Close
, and
Jonathan D Johnston Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by Jonathan D Johnston in
Google Scholar
PubMed
Close

Obesity is a major cause of type 2 diabetes. Transition from obesity to type 2 diabetes manifests in the dysregulation of hormones controlling glucose homeostasis and inflammation. As metabolism is a dynamic process that changes across 24 h, we assessed diurnal rhythmicity in a panel of 10 diabetes-related hormones. Plasma hormones were analysed every 2 h over 24 h in a controlled laboratory study with hourly isocaloric drinks during wake. To separate effects of body mass from type 2 diabetes, we recruited three groups of middle-aged men: an overweight (OW) group with type 2 diabetes and two control groups (lean and OW). Average daily concentrations of glucose, triacylglycerol and all the hormones except visfatin were significantly higher in the OW group compared to the lean group (P < 0.001). In type 2 diabetes, glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide and glucagon-like peptide-1 increased further (P < 0.05), whereas triacylglycerol, ghrelin and plasminogen activator inhibitor-1 concentrations were significantly lower compared to the OW group (P < 0.001). Insulin, C-peptide, glucose-dependent insulinotropic peptide and leptin exhibited significant diurnal rhythms in all study groups (P < 0.05). Other hormones were only rhythmic in 1 or 2 groups. In every group, hormones associated with glucose regulation (insulin, C-peptide, glucose-dependent insulinotropic peptide, ghrelin and plasminogen activator inhibitor-1), triacylglycerol and glucose peaked in the afternoon, whereas glucagon and hormones associated with appetite and inflammation peaked at night. Thus being OW with or without type 2 diabetes significantly affected hormone concentrations but did not affect the timing of the hormonal rhythms.

Open access
Shatha Alharazy Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Shatha Alharazy in
Google Scholar
PubMed
Close
,
M Denise Robertson Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Close
,
Susan Lanham-New Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

Search for other papers by Susan Lanham-New in
Google Scholar
PubMed
Close
,
Muhammad Imran Naseer Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Muhammad Imran Naseer in
Google Scholar
PubMed
Close
,
Adeel G Chaudhary Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Centre for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Adeel G Chaudhary in
Google Scholar
PubMed
Close
, and
Eman Alissa Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Eman Alissa in
Google Scholar
PubMed
Close

Background

Measurement of free 25-hydroyvitamin D (25(OH)D) status has been suggested as a more representative marker of vitamin D status than that of total 25(OH)D. Previously, free 25(OH)D could only be calculated indirectly; however, a newly developed direct assay for the measurement of free 25(OH)D is now available. The aim of this study therefore was to investigate directly measured total and free vitamin D levels association with metabolic health in postmenopausal healthy women living in Saudi Arabia.

Methods

A sample of 302 postmenopausal women aged ≥50 years (n  = 302) living in Saudi Arabia were recruited in a cross-sectional study design. Blood samples were collected from subjects for measurement of serum levels of total 25(OH)D, directly measured free 25(OH)D, metabolic bone parameters, lipid profile, and other biochemical tests.

Results

A positive correlation was found between directly measured free and total 25(OH)D (r = 0.64, P< 0.0001). Total but not free 25(OH)D showed significant association with serum intact parathyroid hormone (P = 0.004), whilst free 25(OH)D but not total 25(OH)D showed a significant association with total cholesterol and LDL-C (P = 0.032 and P = 0.045, respectively).

Conclusions

Free 25(OH)D and total 25(OH)D were found to be consistently correlated but with different associations to metabolic health parameters. Further research is needed to determine which marker of vitamin D status would be the most appropriate in population studies.

Open access