Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M A Webb x
Clear All Modify Search
Open access

M A Webb, H Mani, S J Robertson, H L Waller, D R Webb, C L Edwardson, D H Bodicoat, T Yates, K Khunti and M J Davies

Aims

Physical activity has been proposed to be an effective non-pharmacological method of reducing systemic inflammation and therefore may prove particularly efficacious for women with polycystic ovary syndrome (PCOS) who have been shown to have high levels of inflammation and an increased risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD). Therefore, the aim of the present study was to assess whether modest changes in daily step count could significantly reduce levels of inflammatory markers in women with PCOS.

Subjects and Methods

Sixty-five women with PCOS were assessed at baseline and again at 6 months. All had been provided with an accelerometer and encouraged to increase activity levels. Multivariate linear regression analyses (adjusted for age, ethnicity, baseline step count, change in BMI and change in accelerometer wear-time) were used to assess changes in daily step count against clinical and research biomarkers of inflammation, CVD and T2DM.

Results

Mean step count/day at baseline was 6337 (±270). An increase in step count (by 1000 steps) was associated with a 13% reduction in IL6 (β: −0.81 ng/L; 95% CI, −1.37, −0.25, P = 0.005) and a 13% reduction in CRP (β: −0.68 mg/L; 95% CI, −1.30, −0.06, P = 0.033). Additionally, there was a modest decrease in BMI (β: 0.20 kg/m2; 95% CI, −0.38, −0.01, P = 0.038). Clinical markers of T2DM and CVD were not affected by increased step count.

Conclusions

Modest increases in step count/day can reduce levels of inflammatory markers in women with PCOS, which may reduce the future risk of T2DM and CVD.

Open access

L A Hughes, K McKay-Bounford, E A Webb, P Dasani, S Clokie, H Chandran, L McCarthy, Z Mohamed, J M W Kirk, N P Krone, S Allen and T R P Cole

Disorders of sex development (DSDs) are a diverse group of conditions where the chromosomal, gonadal or anatomical sex can be atypical. The highly heterogeneous nature of this group of conditions often makes determining a genetic diagnosis challenging. Prior to next generation sequencing (NGS) technologies, genetic diagnostic tests were only available for a few of the many DSD-associated genes, which consequently had to be tested sequentially. Genetic testing is key in establishing the diagnosis, allowing for personalised management of these patients. Pinpointing the molecular cause of a patient’s DSD can significantly impact patient management by informing future development needs, altering management strategies and identifying correct inheritance pattern when counselling family members. We have developed a 30-gene NGS panel, designed to be used as a frontline test for all suspected cases of DSD (both 46,XX and 46,XY cases). We have confirmed a diagnosis in 25 of the 80 patients tested to date. Confirmed diagnoses were linked to mutations in AMH, AMHR2, AR, HSD17B3, HSD3B2, MAMLD1, NR5A1, SRD5A2 and WT1 which have resulted in changes to patient management. The minimum diagnostic yield for patients with 46,XY DSD is 25/73. In 34/80 patients, only benign or likely benign variants were identified, and in 21/80 patients only variants of uncertain significance (VOUS) were identified, resulting in a diagnosis not being confirmed in these individuals. Our data support previous studies that an NGS panel approach is a clinically useful and cost-effective frontline test for patients with DSDs.