Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Lianghui You x
  • All content x
Clear All Modify Search
Open access

Yu Lin, Yingying Zhang, Lei Xu, Wei Long, Chunjian Shan, Hongjuan Ding, Lianghui You, Chun Zhao, and Zhonghua Shi

Aims: Gestational diabetes mellitus (GDM)-induced macrosomia is predominantly characterized by fat accumulation, which is closely related to adipocyte differentiation. An unknown long noncoding RNA RP11-290L1.3, referred to as RP11, was identified to be dramatically upregulated in the umbilical cord blood of women with GDM-induced macrosomia in our previous study. We conducted this study to identify the function of RP11 in GDM-induced macrosomia.

Methods: The effects of RP11 gain- and loss-of-function on HPA-v (human preadipocytes-visceral) adipogenesis were determined with lentivirus mediated cell transduction. The mRNA and protein expression levels of adipogenesis makers were evaluated by qPCR/western blot. Then, we performed the Microarray and pathway analysis to explore the possible mechanisms by which RP11 regulates adipogenesis.

Results: Overexpression of RP11 significantly enhanced adipocyte differentiation and increased the mRNA and protein expression levels of adipogenesis makers, such as PPAR-γ, SREBP1c, and FASN by qPCR/western blot. Knockdown of RP11 showed opposite effects. Microarray and pathway analysis showed, after RP11 knockdown, 1,612 genes were upregulated and 583 genes were downregulated which were found to be mainly involved in metabolic pathways, insulin signaling pathway and MAPK signaling pathway.

Conclusion: In conclusion, the unknown lncRNA RP11 serves a positive factor on preadipocyte differentiation which could shed light on fetal fat accumulation in GDM.

Open access

Lianghui You, Yan Wang, Yao Gao, Xingyun Wang, Xianwei Cui, Yanyan Zhang, Lingxia Pang, Chenbo Ji, Xirong Guo, and Xia Chi

Enhanced brown adipose tissue (BAT) mass and activity have been demonstrated to promote the expenditure of excess stored energy and reduce prevalence of obesity. Cold is known as a potent stimulator of BAT and activates BAT primarily through the β3-adrenergic-cAMP signaling. Here, we performed RNA-sequencing to identify differential miRNAs in mouse BAT upon cold exposure and a total of 20 miRNAs were validated. With the treatment of CL-316,243 (CL) and forskolin (Fsk) in mouse and human differentiated brown adipocyte cells in vitro, miR-23b-5p, miR-133a-3p, miR-135-5p, miR-491-5p, and miR-150-3p expression decreased and miR-455-5p expression increased. Among these deferentially expressed miRNAs, miR-23b-5p expression was differentially regulated in activated and aging mouse BAT and negatively correlated with Ucp1 expression. Overexpression of miR-23b-5p in the precursor cells from BAT revealed no significant effects on lipid accumulation, but diminished mitochondrial function and decreased expression of BAT specific markers. Though luciferase reporter assays did not confirm the positive association of miR-23b-5p with the 3′UTRs of the predicted target Ern1, miR-23b-5p overexpression may affect brown adipocyte thermogenic capacity mainly through regulating genes expression involving in lipolysis and fatty acid β-oxidation pathways. Our results suggest that miRNAs are involved in cold-mediated BAT thermogenic activation and further acknowledged miR-23b-5p as a negative regulator in controlling thermogenic programs, further providing potential molecular therapeutic targets to increase surplus energy and treat obesity.