Search Results
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Kristian Almstrup in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Hanne Frederiksen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Puberty marks a transition period, which leads to the attainment of adult sexual maturity. Timing of puberty is a strongly heritable trait. However, large genetic association studies can only explain a fraction of the observed variability and striking secular trends suggest that lifestyle and/or environmental factors are important. Using liquid-chromatography tandem-mass-spectrometry, we measured endocrine-disrupting chemicals (EDCs; triclosan, bisphenol A, benzophenone-3, 2,4-dichlorophenol, 11 metabolites from 5 phthalates) in longitudinal urine samples obtained biannually from peri-pubertal children included in the COPENHAGEN puberty cohort. EDC levels were associated with blood DNA methylation profiles from 31 boys and 20 girls measured both pre- and post-pubertally. We found little evidence of single methylation sites that on their own showed association with urinary excretion levels of EDCs obtained either the same-day or measured as the yearly mean of dichotomized EDC levels. In contrast, methylation of several promoter regions was found to be associated with two or more EDCs, overlap with known gene–chemical interactions, and form a core network with genes known to be important for puberty. Furthermore, children with the highest yearly mean of dichotomized urinary phthalate metabolite levels were associated with higher promoter methylation of the thyroid hormone receptor interactor 6 gene (TRIP6), which again was mirrored by lower circulating TRIP6 protein levels. In general, the mean TRIP6 promoter methylation was mirrored by circulating TRIP6 protein levels. Our results provide a potential molecular mode of action of how exposure to environmental chemicals may modify pubertal development.
Search for other papers by Iben Katinka Greiber in
Google Scholar
PubMed
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
Search for other papers by Alexander Siegfried Busch in
Google Scholar
PubMed
Search for other papers by Mikkel Grunnet Mieritz in
Google Scholar
PubMed
Search for other papers by Lise Aksglæde in
Google Scholar
PubMed
Search for other papers by Katharina Main in
Google Scholar
PubMed
Search for other papers by Kristian Almstrup in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Objective
Fetal anti-Müllerian hormone (AMH) is responsible for normal male sexual differentiation, and circulating AMH is used as a marker of testicular tissue in newborns with disorders of sex development. Little is known about the mechanism of action in postnatal life. A recent genome wide association study (GWAS) reported genetic variation of AMH affecting AMH levels in young men. This study investigated the effect of genetic variation of AMH and AMH type II receptor (AMHR2) (AMHrs10407022 T>G and AMHR2rs11170547 C>T) on circulating reproductive hormone levels and pubertal onset in boys and girls.
Design and methods
This study is a combined longitudinal and cross-sectional study in healthy Danish boys and girls from the general population. We included 658 boys aged 5.8–19.8 years and 320 girls aged 5.6–16.5 years. The main outcome measures were genotyping of AMH and AMHR2, pubertal staging and serum levels of reproductive hormones.
Results
AMHrs10407022T>G was associated with higher serum levels of AMH in prepubertal boys (TT: 575 pmol/L vs TG: 633 pmol/L vs GG: 837 pmol/L, P = 0.002) and adolescents (TT: 44 pmol/L vs TG: 58 pmol/L vs GG: 79 pmol/L, P < 0.001). Adolescent boys carrying the genetic variation also had lower levels of LH (TT: 3.0 IU/L vs TG: 2.8 IU/L vs GG: 1.8 IU/L, P = 0.012). Hormone levels in girls and pubertal onset in either sex did not seem to be profoundly affected by the genotypes.
Conclusion
Our findings support recent GWAS results in young adults and expand our understanding of genetic variation affecting AMH levels even in boys prior to the pubertal decline of circulating AMH.