Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Krist Hausken x
Clear All Modify Search
Lian Hollander-Cohen Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel

Search for other papers by Lian Hollander-Cohen in
Google Scholar
PubMed
Close
,
Benjamin Böhm Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel

Search for other papers by Benjamin Böhm in
Google Scholar
PubMed
Close
,
Krist Hausken Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel

Search for other papers by Krist Hausken in
Google Scholar
PubMed
Close
, and
Berta Levavi-Sivan Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel

Search for other papers by Berta Levavi-Sivan in
Google Scholar
PubMed
Close

The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are the principle endocrine drivers of reproductive processes in the gonads of jawed vertebrates. Canonically, FSH recruits and maintains selected ovarian follicles for maturation and LH induces the stages of germinal vesicle breakdown and ovulation. In mammals, LH and FSH specifically activate cognate G-protein-coupled receptors that affect the proteins involved in steroidogenesis, protein hormone synthesis, and gametogenesis. This dual-gonadotropin model also exists in some fish species, but not in all. In fact, due to their diverse number of species, extended number of ecological niches, and remarkably flexible reproductive strategies, fish are appropriate as models to understand the co-evolution of gonadotropins and their receptors. In this study, we cloned and characterized the expression profile over the final stages of ovarian maturation of carp (Cyprinus carpio) LHCGR and FSHR. Expression of both gonadotropin receptors increased in the later stage of early vitellogenesis, suggesting that both LH and FSH play a role in the development of mature follicles. We additionally tested the activation of cLHCGR and cFSHR using homologous and heterologous recombinant gonadotropins in order to gain insight into an evolutionary model of permissive gonadotropin receptor function. These data suggest that carp (Cyprinus carpio) gonad development and maturation depends on a specific gonadotropin profile that does not reflect the temporally distinct dual-gonadotropin model observed in salmonids or mammals, and that permissive gonadotropin receptor activation is a specific feature of Ostariophysi, not all teleosts.

Open access