Search Results

You are looking at 1 - 10 of 12 items for

  • Author: Jun Zhang x
Clear All Modify Search
Qiuli Liu Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Qiuli Liu in
Google Scholar
PubMed
Close
,
Lin-ang Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Lin-ang Wang in
Google Scholar
PubMed
Close
,
Jian Su Department of Urology, Affiliated Hospital of Nanjing University of Traditional Chinese Medical, Nanjing, People’s Republic of China

Search for other papers by Jian Su in
Google Scholar
PubMed
Close
,
Dali Tong Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Dali Tong in
Google Scholar
PubMed
Close
,
Weihua Lan Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Weihua Lan in
Google Scholar
PubMed
Close
,
Luofu Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Luofu Wang in
Google Scholar
PubMed
Close
,
Gaolei Liu Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Gaolei Liu in
Google Scholar
PubMed
Close
,
Jun Zhang Department of Obstetrics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Jun Zhang in
Google Scholar
PubMed
Close
,
Victor Wei Zhang Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
AmCare Genomics Lab, Guangzhou, People’s Republic of China

Search for other papers by Victor Wei Zhang in
Google Scholar
PubMed
Close
,
Dianzheng Zhang Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA

Search for other papers by Dianzheng Zhang in
Google Scholar
PubMed
Close
,
Rongrong Chen Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Rongrong Chen in
Google Scholar
PubMed
Close
,
Qingyi Zhu Department of Urology, Affiliated Hospital of Nanjing University of Traditional Chinese Medical, Nanjing, People’s Republic of China

Search for other papers by Qingyi Zhu in
Google Scholar
PubMed
Close
, and
Jun Jiang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Jiang in
Google Scholar
PubMed
Close

Congenital adrenal hyperplasia (CAH) is one of the most prevalent, and potentially severe, genetic inborn errors of steroid synthesis directly affecting metabolism. Most patients are diagnosed and treated at an early age. There have been very limited reports of adults with CAH-associated adrenal myelolipomas. We aimed to analyze two families with CAH-associated giant adrenal myelolipomas caused by defects in CYP21A2 and CYP17A1 genes. A total of 14 individuals from two unrelated families were identified with either CYP21A2 or CYP17A1 mutations. Of note, five patients were found with adrenal myelolipomas. Total DNA isolated from the peripheral blood of the two probands was screened for potential mutations in the following susceptibility genes of CAH: CYP21A2, CYP11B1, CYP17A1, HSD17B3, HSD3B2, ARMC5, and STAR using target capture-based deep sequencing; and Sanger sequencing was conducted for the family members to detect the potential mutations. The following results were obtained. In family 1, molecular genetics sequencing revealed a compound heterozygous mutation (c.293-13C>G/c.518T>A, p.I173N) in CYP12A2 in the patient and his brother. In family 2, all three female patients with adrenal myelolipomas were found to have a compound heterozygous mutation (c.1118A>T, p.H373L/c.1459_1467del9, p.D487_F489del) in CYP17A1. To avoid giant CAH-associated adrenal myelolipomas in adults, it is important to identify CAH early so that appropriate treatment can be initiated to interrupt the chronic adrenal hyperstimulation resulting from increased ACTH. Genetic testing and counseling could be useful in CAH.

Open access
Yiqiang Huang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Yiqiang Huang in
Google Scholar
PubMed
Close
,
Lin-ang Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Lin-ang Wang in
Google Scholar
PubMed
Close
,
Qiubo Xie Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Qiubo Xie in
Google Scholar
PubMed
Close
,
Jian Pang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jian Pang in
Google Scholar
PubMed
Close
,
Luofu Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Luofu Wang in
Google Scholar
PubMed
Close
,
Yuting Yi Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Yuting Yi in
Google Scholar
PubMed
Close
,
Jun Zhang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Zhang in
Google Scholar
PubMed
Close
,
Yao Zhang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Yao Zhang in
Google Scholar
PubMed
Close
,
Rongrong Chen Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Rongrong Chen in
Google Scholar
PubMed
Close
,
Weihua Lan Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Weihua Lan in
Google Scholar
PubMed
Close
,
Dianzheng Zhang Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA

Search for other papers by Dianzheng Zhang in
Google Scholar
PubMed
Close
, and
Jun Jiang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Jiang in
Google Scholar
PubMed
Close

Pheochromocytoma and paragangliomas (PCC/PGL) are neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla and sympathetic/parasympathetic ganglia, respectively. Of clinical relevance regarding diagnosis is the highly variable presentation of symptoms in PCC/PGL patients. To date, the clear-cut correlations between the genotypes and phenotypes of PCC/PGL have not been entirely established. In this study, we reviewed the medical records of PCC/PGL patients with pertinent clinical, laboratory and genetic information. Next-generation sequencing (NGS) performed on patient samples revealed specific germline mutations in the SDHB (succinate dehydrogenase complex iron-sulfur subunit B) and SDHD (succinate dehydrogenase complex subunit D) genes and these mutations were validated by Sanger sequencing. Of the 119 patients, two were identified with SDHB mutation and one with SDHD mutation. Immunohistochemical (IHC) staining was used to analyze the expression of these mutated genes. The germline mutations identified in the SDH genes were c343C>T and c.541-542A>G in the SDHB gene and c.334-337delACTG in the SDHD gene. IHC staining of tumors from the c.343C>T and c.541-2A>G carriers showed positive expression of SDHB. Tumors from the c.334-337delACTG carrier showed no expression of SDHD and a weak diffused staining pattern for SDHB. We strongly recommend genetic testing for suspected PCC/PGL patients with a positive family history, early onset of age, erratic hypertension, recurrence or multiple tumor sites and loss of SDHB and/or SDHD expression. Tailored personal management should be conducted once a patient is confirmed as an SDHB and/or SDHD mutation carrier or diagnosed with PCC/PGL.

Open access
Qiuli Liu Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Qiuli Liu in
Google Scholar
PubMed
Close
,
Gang Yuan Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Gang Yuan in
Google Scholar
PubMed
Close
,
Dali Tong Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Dali Tong in
Google Scholar
PubMed
Close
,
Gaolei Liu Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Gaolei Liu in
Google Scholar
PubMed
Close
,
Yuting Yi Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Yuting Yi in
Google Scholar
PubMed
Close
,
Jun Zhang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Zhang in
Google Scholar
PubMed
Close
,
Yao Zhang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Yao Zhang in
Google Scholar
PubMed
Close
,
Lin-ang Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Lin-ang Wang in
Google Scholar
PubMed
Close
,
Luofu Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Luofu Wang in
Google Scholar
PubMed
Close
,
Dianzheng Zhang Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA

Search for other papers by Dianzheng Zhang in
Google Scholar
PubMed
Close
,
Rongrong Chen Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Rongrong Chen in
Google Scholar
PubMed
Close
,
Yanfang Guan Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Yanfang Guan in
Google Scholar
PubMed
Close
,
Xin Yi Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Xin Yi in
Google Scholar
PubMed
Close
,
Weihua Lan Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Weihua Lan in
Google Scholar
PubMed
Close
, and
Jun Jiang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Jiang in
Google Scholar
PubMed
Close

Context

Von Hippel–Lindau (VHL) disease manifests as a variety of benign and malignant neoplasms. Previous studies of VHL disease have documented several genotype–phenotype correlations; however, many such correlations are still unknown. Increased identification of new mutations and patients with previously described mutations will allow us to better understand how VHL mutations influence disease phenotypes.

Patients and design

A total of 45 individuals from five unrelated families were evaluated, of which 21 patients were either diagnosed with VHL disease or showed strong evidence related to this disease. We compared the patients’ gene sequencing results with their medical records including CT or MRI scans, eye examinations and laboratory/pathological examinations. Patients were also interviewed to obtain information regarding their family history.

Results

We identified four missense mutations: c.239G>T (p.Ser80Ile), linked with VHL Type 2B, was associated with renal cell carcinoma, pheochromocytoma and hemangioma in the cerebellum; c.232A>T (p.Asn78Tyr) manifested as RCC alone and likely caused VHL Type 1; c.500G>A (p.Arg167Gln) mutation was more likely to cause VHL Type 2 than Type 1 as it preferentially induced Pheo and HB in the retina, cerebellum and spinal cord; c.293A>G (p.Try98Cys) was associated with Pheo and thus likely induced VHL Type 2.

Conclusions

Characterizing VHL disease genotype–phenotype correlations can enhance the ability to predict the risk of individual patients developing different VHL-related phenotypes. Ultimately, such insight will improve the diagnostics, surveillance and treatment of VHL patients.

Precis

Four missense mutations in VHL have been identified in 21 individuals when five unrelated Chinese families with VHL disease were analyzed; VHL mutations are highly associated with unique disease phenotypes.

Open access
Chao-bin He Department of Hepatobiliary and Pancreatic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China

Search for other papers by Chao-bin He in
Google Scholar
PubMed
Close
,
Yu Zhang State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China

Search for other papers by Yu Zhang in
Google Scholar
PubMed
Close
,
Zhi-yuan Cai Department of Hepatobiliary and Pancreatic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China

Search for other papers by Zhi-yuan Cai in
Google Scholar
PubMed
Close
, and
Xiao-jun Lin Department of Hepatobiliary and Pancreatic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China

Search for other papers by Xiao-jun Lin in
Google Scholar
PubMed
Close

Aim

The role of surgery in the treatment of metastatic pancreatic neuroendocrine tumors (PNETs) was controversial. The objectives of this study were to illustrate the impact of surgery in improving the prognosis of patients with metastatic PNETs and build nomograms to predict overall survival (OS) and cancer-specific survival (CSS) based on a large population-based cohort.

Methods

Patients diagnosed with metastatic PNETs between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database were retrospectively collected. Nomograms for estimating OS and CSS were established based on Cox regression model and Fine and Grey’s model. The precision of the nomograms was evaluated and compared using concordance index (C-index) and the area under receiver operating characteristic (ROC) curve (AUC).

Results

The study cohort included 1966 patients with metastatic PNETs. It was shown that the surgery provided survival benefit for all groups of patients with metastatic PNETs. In the whole study cohort, 1-, 2- and 3-year OS and CSS were 51.5, 37.1 and 29.4% and 53.0, 38.9 and 31.1%, respectively. The established nomograms were well calibrated, and had good discriminative ability, with C-indexes of 0.773 for OS prediction and 0.774 for CSS prediction.

Conclusions

Patients with metastatic PNETs could benefit from surgery when the surgery tolerance was acceptable. The established nomograms could stratify patients who were categorized as tumor-node-metastasis (TNM) IV stage into groups with diverse prognoses, showing better discrimination and calibration of the established nomograms, compared with 8th TNM stage system in predicting OS and CSS for patients with metastatic PNETs.

Open access
Zhiyan Yu Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Zhiyan Yu in
Google Scholar
PubMed
Close
,
Yueyue Wu Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Yueyue Wu in
Google Scholar
PubMed
Close
,
Rui Zhang Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Rui Zhang in
Google Scholar
PubMed
Close
,
Yue Li Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Yue Li in
Google Scholar
PubMed
Close
,
Shufei Zang Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Shufei Zang in
Google Scholar
PubMed
Close
, and
Jun Liu Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Jun Liu in
Google Scholar
PubMed
Close

Background

This study aimed to investigate the association of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis with osteoporosis in postmenopausal women and men over 50 years of age with type 2 diabetes (T2DM).

Methods

In this study, 1243 patients with T2DM (T2DM with coexistent NAFLD, n  = 760; T2DM with no NAFLD, n  = 483) were analysed. Non-invasive markers, NAFLD fibrosis score (NFS) and fibrosis index based on four factors (FIB-4), were applied to evaluate NAFLD fibrosis risk.

Results

There was no significant difference in bone mineral density (BMD) between the NAFLD group and the non-NAFLD group or between males and females after adjusting for age, BMI and gender. In postmenopausal women, there was an increased risk of osteoporosis (odds ratio (OR): 4.41, 95% CI: 1.04–18.70, P = 0.039) in the FIB-4 high risk group compared to the low risk group. Similarly, in women with high risk NFS, there was an increased risk of osteoporosis (OR: 5.98, 95% CI: 1.40–25.60, P = 0.043) compared to the low risk group. Among men over 50 years old, there was no significant difference in bone mineral density between the NAFLD group and the non-NAFLD group and no significant difference between bone mineral density and incidence of osteopenia or osteoporosis among those with different NAFLD fibrosis risk.

Conclusion

There was a significant association of high risk for NAFLD liver fibrosis with osteoporosis in postmenopausal diabetic women but not men. In clinical practice, gender-specific evaluation of osteoporosis is needed in patients with T2DM and coexistent NAFLD.

Open access
Junhui Zhang J Zhang, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China

Search for other papers by Junhui Zhang in
Google Scholar
PubMed
Close
,
Hongyan Zhang H Zhang, Department of Histology and Embryology, Anhui Medical University, Hefei, China

Search for other papers by Hongyan Zhang in
Google Scholar
PubMed
Close
,
Bao Guo B Guo, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China

Search for other papers by Bao Guo in
Google Scholar
PubMed
Close
,
Jun Yang J Yang, Anhui Medical University, Hefei, China

Search for other papers by Jun Yang in
Google Scholar
PubMed
Close
,
Renxiang Yu R Yu, Anhui Medical University, Hefei, China

Search for other papers by Renxiang Yu in
Google Scholar
PubMed
Close
,
Wenxiu Chen W Chen, Department of Histology and Embryology, Anhui Medical University, Hefei, China

Search for other papers by Wenxiu Chen in
Google Scholar
PubMed
Close
,
Muxin Zhai M Zhai, Anhui Medical University, Hefei, China

Search for other papers by Muxin Zhai in
Google Scholar
PubMed
Close
,
Cao Yuhan C Yuhan, Anhui Medical University, Hefei, China

Search for other papers by Cao Yuhan in
Google Scholar
PubMed
Close
,
Yajing Liu Y Liu, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China

Search for other papers by Yajing Liu in
Google Scholar
PubMed
Close
,
Qiang Hong Q Hong, Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China

Search for other papers by Qiang Hong in
Google Scholar
PubMed
Close
, and
Fenfen Xie F Xie, Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China

Search for other papers by Fenfen Xie in
Google Scholar
PubMed
Close

The elevated level of hepatic oxidative stress (OS) in polycystic ovary syndrome (PCOS) is one of the important causes of liver abnormalities. Therefore, decreasing the level of hepatic OS in PCOS is beneficial to reduce the risk of PCOS-related liver diseases. Melatonin (MT), recognized as a potent antioxidant. Nevertheless, the efficacy of MT in alleviating hepatic OS associated with PCOS is yet to be established, and the precise mechanisms through which MT exerts its antioxidant effects remain to be fully elucidated. The aim of this study was to explore the potential mechanism by which MT reduces hepatic OS in PCOS. First, we detected elevated OS levels in the PCOS samples. Subsequently, with MT pretreatment, we discovered that MT could significantly diminish the levels of OS, liver triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT) and aspartate aminotransferase (AST),while concurrently ameliorating mitochondrial structural damage in PCOS liver. Furthermore, we identified elevated autophagy levels in the liver of PCOS rats and an inhibition of the Keap1-Nrf2 pathway. Through MT pretreatment, the expression of LC3 was significantly decreased, while the Keap1-Nrf2 pathway was activated. Our study showed that MT could affect the Nrf2 pathway dependent on the P62/LC3 autophagy pathway, thereby attenuating hepatic OS in PCOS. These findings offer novel insights and research avenues for the study of PCOS-related liver diseases.

Open access
Peng Fan Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Peng Fan in
Google Scholar
PubMed
Close
,
Chao-Xia Lu McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Chao-Xia Lu in
Google Scholar
PubMed
Close
,
Di Zhang Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Di Zhang in
Google Scholar
PubMed
Close
,
Kun-Qi Yang Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Kun-Qi Yang in
Google Scholar
PubMed
Close
,
Pei-Pei Lu Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Pei-Pei Lu in
Google Scholar
PubMed
Close
,
Ying Zhang Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Ying Zhang in
Google Scholar
PubMed
Close
,
Xu Meng Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Xu Meng in
Google Scholar
PubMed
Close
,
Su-Fang Hao Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Su-Fang Hao in
Google Scholar
PubMed
Close
,
Fang Luo Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Fang Luo in
Google Scholar
PubMed
Close
,
Ya-Xin Liu Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Ya-Xin Liu in
Google Scholar
PubMed
Close
,
Hui-Min Zhang Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Hui-Min Zhang in
Google Scholar
PubMed
Close
,
Lei Song Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Lei Song in
Google Scholar
PubMed
Close
,
Jun Cai Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Jun Cai in
Google Scholar
PubMed
Close
,
Xue Zhang McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Xue Zhang in
Google Scholar
PubMed
Close
, and
Xian-Liang Zhou Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Xian-Liang Zhou in
Google Scholar
PubMed
Close

Liddle syndrome (LS), a monogenetic autosomal dominant disorder, is mainly characterized by early-onset hypertension and hypokalemia. Clinically, misdiagnosis or missing diagnosis is common, since clinical phenotypes of LS are variable and nonspecific. We report a family with misdiagnosis of primary aldosteronism (PA), but identify as LS with a pathogenic frameshift mutation of the epithelial sodium channel (ENaC) β subunit. DNA samples were collected from a 32-year-old proband and 31 other relatives in the same family. A designed panel including 41 genes associated with monogenic hypertension was screened using next-generation sequencing. The best candidate disease-causing variants were verified by Sanger sequencing. Genetic analysis of the proband revealed a novel frameshift mutation c.1838delC (p.Pro613Glnfs*675) in exon 13 of SCNN1B. This heterozygous mutation involved the deletion of a cytosine from a string of three consecutive cytosines located at codons 612 to 613 and resulted in deletion of the crucial PY motif and elongation of the β-ENaC protein. The identical mutation was also found in 12 affected family members. Amiloride was effective in alleviating LS for patients. There were no SCNN1A or SCNN1G mutations in this family. Our study emphasizes the importance of considering LS in the differential diagnosis of early-onset hypertension. The identification of a novel frameshift mutation of SCNN1B enriches the genetic spectrum of LS and has allowed treatment of this affected family to prevent severe complications.

Open access
Rui Zhang Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Rui Zhang in
Google Scholar
PubMed
Close
,
Xinmei Huang Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Xinmei Huang in
Google Scholar
PubMed
Close
,
Yue Li Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Yue Li in
Google Scholar
PubMed
Close
,
Zhiyan Yu Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Zhiyan Yu in
Google Scholar
PubMed
Close
,
Yueyue Wu Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Yueyue Wu in
Google Scholar
PubMed
Close
,
Bingbing Zha Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Bingbing Zha in
Google Scholar
PubMed
Close
,
Heyuan Ding Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Heyuan Ding in
Google Scholar
PubMed
Close
,
Shufei Zang Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Shufei Zang in
Google Scholar
PubMed
Close
, and
Jun Liu Department of Endocrinology, Shanghai Fifth People’s Hospital affiliated to Fudan University, Minhang District, Shanghai, People’s Republic of China

Search for other papers by Jun Liu in
Google Scholar
PubMed
Close

Objective

The aim of this study was to evaluate the effect of TFR2 on iron storage in type 2 diabetes.

Methods

A cross-sectional study was conducted among 1938 participants from the Jiangchuan Community of Shanghai. A total of 784 participants with T2DM and 1154 normal participants (non-T2DM) were enrolled in this study. Serum ferritin, fasting blood glucose, postprandial blood glucose, and HbA1C (glycated hemoglobin A1c) levels were determined. Eighteen Wistar male rats were randomly assigned into three groups (n = 6/group): rats in a high-fat diet streptozotocin (HFD+STZ) group were fed with HFD for 4 weeks and intraperitoneally injected with streptozotocin (STZ); rats in a control group were fed with a standard diet for 4 weeks and intraperitoneally injected with buffer; rats in an STZ group were fed with a standard diet for 4 weeks and intraperitoneally injected with streptozotocin. Glucose tolerance test was performed at the end of the study. Blood samples and liver tissues were assessed for liver TFR2, blood glucose, serum ferritin, and iron levels.

Results

The mean serum ferritin level of T2DM participants was significantly higher than that of the control group (227 (140–352) vs 203.5 (130.5–312) ng/mL, P < 0.05). Serum ferritin level was an independent risk factor for T2DM (high ferritin group vs low ferritin group, 1.304 (1.03–1.651), P < 0.05). Diabetic rats showed reduced liver TFR2 levels, with increased serum ferritin levels.

Conclusion

T2DM participants exhibited iron disorder with elevated serum ferritin levels. Elevated serum ferritin levels in diabetic rats were accompanied by reduced liver TFR2 levels.

Open access
Zi-Di Xu Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Zi-Di Xu in
Google Scholar
PubMed
Close
,
Wei Zhang Department of Children Health Care, Xiamen Maternal and Child Health Hospital, Xiamen, China

Search for other papers by Wei Zhang in
Google Scholar
PubMed
Close
,
Min Liu Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Min Liu in
Google Scholar
PubMed
Close
,
Huan-Min Wang Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Huan-Min Wang in
Google Scholar
PubMed
Close
,
Pei-Pei Hui Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Pei-Pei Hui in
Google Scholar
PubMed
Close
,
Xue-Jun Liang Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Xue-Jun Liang in
Google Scholar
PubMed
Close
,
Jie Yan Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Jie Yan in
Google Scholar
PubMed
Close
,
Yu-Jun Wu Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Yu-Jun Wu in
Google Scholar
PubMed
Close
,
Yan-Mei Sang Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Yan-Mei Sang in
Google Scholar
PubMed
Close
,
Cheng Zhu Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Cheng Zhu in
Google Scholar
PubMed
Close
, and
Gui-Chen Ni Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China

Search for other papers by Gui-Chen Ni in
Google Scholar
PubMed
Close

This study aims to summarize and analyze the clinical manifestations, genetic characteristics, treatment modalities and long-term prognosis of congenital hyperinsulinemia (CHI) in Chinese children. Sixty children with CHI, who were treated at Beijing Children’s Hospital from January 2014 to August 2017, and their families, were selected as subjects. The CHI-related causative genes in children were sequenced and analyzed using second-generation sequencing technology. Furthermore, the genetic pathogenesis and clinical characteristics of Chinese children with CHI were explored. Among the 60 CHI children, 27 children (27/60, 45%) carried known CHI-related gene mutations: 16 children (26.7%) carried ABCC8 gene mutations, seven children (11.7%) carried GLUD1 gene mutations, one child carried GCK gene mutations, two children carried HNF4α gene mutations and one child carried HADH gene mutations. In these 60 patients, eight patients underwent 18F-L-DOPA PET scan for the pancreas, and five children were found to be focal type. The treatment of diazoxide was ineffective in these five patients, and hypoglycemia could be controlled after receiving partial pancreatectomy. In conclusion, ABCC8 gene mutation is the most common cause of CHI in Chinese children. The early genetic analysis of children’s families has an important guiding significance for treatment planning and prognosis assessment.

Open access
Xue-Lian Zhang Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China

Search for other papers by Xue-Lian Zhang in
Google Scholar
PubMed
Close
,
Xinyi Zhao Department of Physiology, School of Medicine, Jinan University, Guangzhou, China

Search for other papers by Xinyi Zhao in
Google Scholar
PubMed
Close
,
Yong Wu Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Search for other papers by Yong Wu in
Google Scholar
PubMed
Close
,
Wen-qing Huang Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China

Search for other papers by Wen-qing Huang in
Google Scholar
PubMed
Close
,
Jun-jiang Chen Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Search for other papers by Jun-jiang Chen in
Google Scholar
PubMed
Close
,
Peijie Hu Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Search for other papers by Peijie Hu in
Google Scholar
PubMed
Close
,
Wei Liu Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China

Search for other papers by Wei Liu in
Google Scholar
PubMed
Close
,
Yi-Wen Chen Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China

Search for other papers by Yi-Wen Chen in
Google Scholar
PubMed
Close
,
Jin Hao Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China

Search for other papers by Jin Hao in
Google Scholar
PubMed
Close
,
Rong-Rong Xie Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China

Search for other papers by Rong-Rong Xie in
Google Scholar
PubMed
Close
,
Hsiao Chang Chan Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China

Search for other papers by Hsiao Chang Chan in
Google Scholar
PubMed
Close
,
Ye Chun Ruan Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Search for other papers by Ye Chun Ruan in
Google Scholar
PubMed
Close
,
Hui Chen Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

Search for other papers by Hui Chen in
Google Scholar
PubMed
Close
, and
Jinghui Guo Department of Physiology, School of Medicine, Jinan University, Guangzhou, China

Search for other papers by Jinghui Guo in
Google Scholar
PubMed
Close

Objective

The beneficial effect of angiotensin(1–7) (Ang(1–7)), via the activation of its receptor, MAS-1, has been noted in diabetes treatment; however, how Ang(1–7) or MAS-1 affects insulin secretion remains elusive and whether the endogenous level of Ang(1–7) or MAS-1 is altered in diabetic individuals remains unexplored. We recently identified an important role of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl channel, in the regulation of insulin secretion. Here, we tested the possible involvement of CFTR in mediating Ang(1–7)’s effect on insulin secretion and measured the level of Ang(1–7), MAS-1 as well as CFTR in the blood of individuals with or without type 2 diabetes.

Methods

Ang(1–7)/MAS-1/CFTR pathway was determined by specific inhibitors, gene manipulation, Western blotting as well as insulin ELISA in a pancreatic β-cell line, RINm5F. Human blood samples were collected from 333 individuals with (n  = 197) and without (n  = 136) type 2 diabetes. Ang(1–7), MAS-1 and CFTR levels in the human blood were determined by ELISA.

Results

In RINm5F cells, Ang(1–7) induced intracellular cAMP increase, cAMP-response element binding protein (CREB) activation, enhanced CFTR expression and potentiated glucose-stimulated insulin secretion, which were abolished by a selective CFTR inhibitor, RNAi-knockdown of CFTR, or inhibition of MAS-1. In human subjects, the blood levels of MAS-1 and CFTR, but not Ang(1–7), were significantly higher in individuals with type 2 diabetes as compared to those in non-diabetic healthy subjects. In addition, blood levels of MAS-1 and CFTR were in significant positive correlation in type-2 diabetic but not non-diabetic subjects.

Conclusion

These results suggested that MAS-1 and CFTR as key players in mediating Ang(1–7)-promoted insulin secretion in pancreatic β-cells; MAS-1 and CFTR are positively correlated and both upregulated in type 2 diabetes.

Open access