Search Results
Search for other papers by Jonneke J Hollanders in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Noera Kieviet in
Google Scholar
PubMed
Search for other papers by Koert M Dolman in
Google Scholar
PubMed
Search for other papers by Yolanda B de Rijke in
Google Scholar
PubMed
Search for other papers by Erica L T van den Akker in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
Search for other papers by Adriaan Honig in
Google Scholar
PubMed
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Background
Glucocorticoids (GCs) measured in neonatal hair might reflect intrauterine as well as postpartum GC regulation. We aimed to identify factors associated with neonatal hair GC levels in early life, and their correlation with maternal hair GCs.
Methods
In a single-center observational study, mother–infant pairs (n = 107) admitted for >72 h at the maternity ward of a general hospital were included. At birth and an outpatient visit (OPV, n = 72, 44 ± 11 days postpartum), maternal and neonatal hair was analyzed for cortisol and cortisone levels by LC–MS/MS. Data were analyzed regarding: (1) neonatal GC levels postpartum and at the OPV, (2) associations of neonatal GC levels with maternal GC levels and (3) with other perinatal factors.
Results
(1) Neonatal GC levels were >5 times higher than maternal levels, with a decrease in ±50% between birth and the OPV for cortisol. (2) Maternal and neonatal cortisol, but not cortisone, levels were correlated both at postpartum and at the OPV. (3) Gestational age was associated with neonatal GC postpartum (log-transformed β (95% CI): cortisol 0.07 (0.04–0.10); cortisone 0.04 (0.01–0.06)) and at the OPV (cortisol 0.08 (0.04–0.12); cortisone 0.00 (−0.04 to 0.04)), while weaker associations were found between neonatal GCs and other perinatal and maternal factors.
Conclusions
Neonatal hair GCs mainly reflect the third trimester increase in cortisol, which might be caused by the positive feedback loop, a placenta-driven phenomenon, represented by the positive association with GA. Between birth and 1.5 months postpartum, neonatal hair cortisol concentrations decrease sharply, but still appear to reflect both intra- and extrauterine periods.
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Search for other papers by Conor V Dolan in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Hilleke Hulshoff Pol in
Google Scholar
PubMed
Search for other papers by Dorret I Boomsma in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Objective
Sex differences in disease susceptibility might be explained by sexual dimorphism in hypothalamic-pituitary-adrenal axis activity, which has been postulated to emerge during puberty. However, studies conducted thus far lacked an assessment of Tanner pubertal stage. This study aimed to assess the contribution of pubertal development to sexual dimorphism in cortisol production and metabolism.
Methods
Participants (n = 218) were enrolled from a population-based Netherlands Twin Register. At the ages of 9, 12 and 17 years, Tanner pubertal stage was assessed and early morning urine samples were collected. Cortisol metabolites were measured with GC-MS/MS and ratios were calculated, representing cortisol metabolism enzyme activities, such as A-ring reductases, 11β-HSDs and CYP3A4. Cortisol production and metabolism parameters were compared between sexes for pre-pubertal (Tanner stage 1), early pubertal (Tanner stage 2–3) and late-pubertal (Tanner stage 4–5) stages.
Results
Cortisol metabolite excretion rate decreased with pubertal maturation in both sexes, but did not significantly differ between sexes at any pubertal stage, although in girls a considerable decrease was observed between early and late-pubertal stage (P < 0.001). A-ring reductase activity was similar between sexes at pre- and early pubertal stages and was lower in girls than in boys at late-pubertal stage. Activities of 11β-HSDs were similar between sexes at pre-pubertal stage and favored cortisone in girls at early and late-pubertal stages. Cytochrome P450 3A4 activity did not differ between sexes.
Conclusions
Prepubertally, sexes were similar in cortisol parameters. During puberty, as compared to boys, in girls the activities of A-ring reductases declined and the balance between 11β-HSDs progressively favored cortisone. In addition, girls showed a considerable decrease in cortisol metabolite excretion rate between early and late-pubertal stages. Our findings suggest that the sexual dimorphism in cortisol may either be explained by rising concentrations of sex steroids or by puberty-induced changes in body composition.
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Michelle Romijn in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Marita de Waard in
Google Scholar
PubMed
Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Search for other papers by Johannes B van Goudoever in
Google Scholar
PubMed
Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Objective
Sex-specific differences in hypothalamic–pituitary–adrenal axis activity might explain why male preterm infants are at higher risk of neonatal mortality and morbidity than their female counterparts. We examined whether male and female preterm infants differed in cortisol production and metabolism at 10 days post-partum.
Design and methods
This prospective study included 36 preterm born infants (18 boys) with a very low birth weight (VLBW) (<1.500 g). At 10 days postnatal age, urine was collected over a 4- to 6-h period. Glucocorticoid metabolites were measured using gas chromatography-mass spectrometry. Main outcome measures were: (1) cortisol excretion rate, (2) sum of all glucocorticoid metabolites, as an index of corticosteroid excretion rate, and (3) ratio of 11-OH/11-OXO metabolites, as an estimate of 11B-hydroxysteroid dehydrogenase (11B-HSD) activity. Differences between sexes, including interaction with Score of Neonatal Acute Physiology Perinatal Extension-II (SNAPPE II), sepsis and bronchopulmonary dysplasia (BPD), were assessed.
Results
No differences between sexes were found for cortisol excretion rate, corticosteroid excretion rate or 11B-HSD activity. Interaction was observed between: sex and SNAPPE II score on 11B-HSD activity (P = 0.04) and sex and BPD on cortisol excretion rate (P = 0.04).
Conclusion
This study did not provide evidence for sex-specific differences in adrenocortical function in preterm VLBW infants on a group level. However, in an interaction model, sex differences became manifest under stressful circumstances. These patterns might provide clues for the male disadvantage in neonatal mortality and morbidity following preterm birth. However, due to the small sample size, the data should be seen as hypothesis generating.
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Search for other papers by Aleid J G Wirix in
Google Scholar
PubMed
Search for other papers by Ines A von Rosenstiel-Jadoul in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Mai J M Chinapaw in
Google Scholar
PubMed
Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Search for other papers by Joana E Kist-van Holthe in
Google Scholar
PubMed
Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Objective
Childhood obesity is associated with alterations in hypothalamus–pituitary–adrenal axis activity. We tested the hypothesis that multiple alterations in the metabolism of glucocorticoids are required for the development of hypertension in children who become overweight.
Methods
Spot urine for targeted gas chromatography-mass spectrometry steroid metabolome analysis was collected from (1) overweight/hypertensive children (n = 38), (2) overweight/non-hypertensive children (n = 83), and (3) non-overweight/non-hypertensive children (n = 56).
Results
The mean (± s.d.) age of participants was 10.4 ± 3.4 years, and 53% of them were male. Group 1 and group 2 had higher excretion rates of cortisol and corticosterone metabolites than group 3 (869 (interquartile range: 631–1352) vs 839 (609–1123) vs 608 (439–834) μg/mmol creatinine × m2 body surface area, P < 0.01, for the sum of cortisol metabolites), and group 1 had a higher excretion rate of naive cortisol than group 3. Furthermore, groups differed in cortisol metabolism, in particular in the activities of 11β-hydroxysteroid dehydrogenases, as assessed from the ratio of cortisol:cortisone metabolites (group 2 < group 3), 5α-reductase (group 1 > group 2 or 3), and CYP3A4 activity (group 1 < group 2 or 3).
Discussion
The sequence of events leading to obesity-associated hypertension in children may involve an increase in the production of glucocorticoids, downregulation of 11β-hydroxysteroid dehydrogenase type 1 activity, and upregulation of 5α-reductase activity, along with a decrease in CYP3A4 activity and an increase in bioavailable cortisol.