Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Hui Chen x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Yang Lv, Ning Pu, Wei-lin Mao, Wen-qi Chen, Huan-yu Wang, Xu Han, Yuan Ji, Lei Zhang, Da-yong Jin, Wen-Hui Lou, and Xue-feng Xu

Aim

We aim to investigate the clinical characteristics of the rectal NECs and the prognosis-related factors and construct a nomogram for prognosis prediction.

Methods

The data of 41 patients and 1028 patients with rectal NEC were retrieved respectively from our institution and SEER database. OS or PFS was defined as the major study outcome. Variables were compared by chi-square test and t-test when appropriate. Kaplan–Meier analysis with log-rank test was used for survival analysis and the Cox regression analysis was applied. The nomogram integrating risk factors for predicting OS was constructed by R to achieve superior discriminatory ability. Predictive utility of the nomogram was determined by concordance index (C-index) and calibration curve.

Results

In the univariate and multivariate analyses, tumor differentiation, N stage, M stage and resection of primary site were identified as independent prognostic indicators. The linear regression relationship was found between the value of Ki-67 index and the duration of OS (P < 0.05). Furthermore, the independent prognostic factors were added to formulate prognostic nomogram. The constructed nomogram showed good performance according to the C-index.

Conclusions

Contrary to WHO classification guideline, we found that the rectal NEC diseases are heterogeneous and should be divided as different categories according to the pathological differentiation. Besides, the nomogram formulated in this study showed excellent discriminative capability to predict OS for those patients. More advanced predictive model for this disease is required to assist risk stratification via the formulated nomogram.

Open access

Jintao Hu, Qingbo Chen, Xiao Ding, Xin Zheng, Xuefeng Tang, Song Li, and Hui Yang

Objective

Many cancer cells cannot survive without exogenous glutamine (Gln); however, cancer cells expressing glutamine synthetase (GS) do not have this restriction. Previous metabolomics studies have indicated that glutamine metabolism is altered during pituitary tumorigenesis. However, the main role of Gln in pituitary adenoma (PA) pathophysiology remains unknown. The aim of this study was to evaluate the expression of GS and the main role of Gln in human PAs.

Methods

We used cell proliferation assay and flow cytometry to assess the effect of Gln depletion on three different pituitary cell lines and human primary PA cells. We then investigated the expression level of Gln synthetase (GS) in 24 human PA samples. At last, we used LC-MS/MS to identify the differences in metabolites of PA cells after the blockage of both endogenous and exogenous Gln.

Results

PA cell lines showed different sensitivities to Gln starvation, and the sensitivity is correlated with GS expression level. GS expressed in 21 out of the 24 human PA samples. Furthermore, a positive p53 and ki-67 index was correlated with a higher GS expression level (P < 0.05). Removal of both endogenous and exogenous Gln from GS-expressing PA cells resulted in blockage of nucleotide metabolism and cell cycle arrest.

Conclusions

Our data indicate that GS is needed for PA cells to undergo proliferation during Gln deprivation, and most human PA cells express GS and might have a negative response to exogenous Gln depletion. Moreover, Gln is mainly responsible for nucleotide metabolism in the proliferation of GS-expressing pituitary tumor cells.

Open access

Xue-Lian Zhang, Xinyi Zhao, Yong Wu, Wen-qing Huang, Jun-jiang Chen, Peijie Hu, Wei Liu, Yi-Wen Chen, Jin Hao, Rong-Rong Xie, Hsiao Chang Chan, Ye Chun Ruan, Hui Chen, and Jinghui Guo

Objective

The beneficial effect of angiotensin(1–7) (Ang(1–7)), via the activation of its receptor, MAS-1, has been noted in diabetes treatment; however, how Ang(1–7) or MAS-1 affects insulin secretion remains elusive and whether the endogenous level of Ang(1–7) or MAS-1 is altered in diabetic individuals remains unexplored. We recently identified an important role of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl channel, in the regulation of insulin secretion. Here, we tested the possible involvement of CFTR in mediating Ang(1–7)’s effect on insulin secretion and measured the level of Ang(1–7), MAS-1 as well as CFTR in the blood of individuals with or without type 2 diabetes.

Methods

Ang(1–7)/MAS-1/CFTR pathway was determined by specific inhibitors, gene manipulation, Western blotting as well as insulin ELISA in a pancreatic β-cell line, RINm5F. Human blood samples were collected from 333 individuals with (n  = 197) and without (n  = 136) type 2 diabetes. Ang(1–7), MAS-1 and CFTR levels in the human blood were determined by ELISA.

Results

In RINm5F cells, Ang(1–7) induced intracellular cAMP increase, cAMP-response element binding protein (CREB) activation, enhanced CFTR expression and potentiated glucose-stimulated insulin secretion, which were abolished by a selective CFTR inhibitor, RNAi-knockdown of CFTR, or inhibition of MAS-1. In human subjects, the blood levels of MAS-1 and CFTR, but not Ang(1–7), were significantly higher in individuals with type 2 diabetes as compared to those in non-diabetic healthy subjects. In addition, blood levels of MAS-1 and CFTR were in significant positive correlation in type-2 diabetic but not non-diabetic subjects.

Conclusion

These results suggested that MAS-1 and CFTR as key players in mediating Ang(1–7)-promoted insulin secretion in pancreatic β-cells; MAS-1 and CFTR are positively correlated and both upregulated in type 2 diabetes.

Open access

Zi-Di Xu, Wei Zhang, Min Liu, Huan-Min Wang, Pei-Pei Hui, Xue-Jun Liang, Jie Yan, Yu-Jun Wu, Yan-Mei Sang, Cheng Zhu, and Gui-Chen Ni

This study aims to summarize and analyze the clinical manifestations, genetic characteristics, treatment modalities and long-term prognosis of congenital hyperinsulinemia (CHI) in Chinese children. Sixty children with CHI, who were treated at Beijing Children’s Hospital from January 2014 to August 2017, and their families, were selected as subjects. The CHI-related causative genes in children were sequenced and analyzed using second-generation sequencing technology. Furthermore, the genetic pathogenesis and clinical characteristics of Chinese children with CHI were explored. Among the 60 CHI children, 27 children (27/60, 45%) carried known CHI-related gene mutations: 16 children (26.7%) carried ABCC8 gene mutations, seven children (11.7%) carried GLUD1 gene mutations, one child carried GCK gene mutations, two children carried HNF4α gene mutations and one child carried HADH gene mutations. In these 60 patients, eight patients underwent 18F-L-DOPA PET scan for the pancreas, and five children were found to be focal type. The treatment of diazoxide was ineffective in these five patients, and hypoglycemia could be controlled after receiving partial pancreatectomy. In conclusion, ABCC8 gene mutation is the most common cause of CHI in Chinese children. The early genetic analysis of children’s families has an important guiding significance for treatment planning and prognosis assessment.