Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Gerdien A Zeilmaker-Roest x
Clear All Modify Search
Arno Téblick Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Arno Téblick in
Google Scholar
PubMed
Close
,
Ilse Vanhorebeek Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Ilse Vanhorebeek in
Google Scholar
PubMed
Close
,
Inge Derese Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Inge Derese in
Google Scholar
PubMed
Close
,
An Jacobs Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by An Jacobs in
Google Scholar
PubMed
Close
,
Renata Haghedooren Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Renata Haghedooren in
Google Scholar
PubMed
Close
,
Sofie Maebe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Sofie Maebe in
Google Scholar
PubMed
Close
,
Gerdien A Zeilmaker-Roest Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Gerdien A Zeilmaker-Roest in
Google Scholar
PubMed
Close
,
Enno D Wildschut Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Enno D Wildschut in
Google Scholar
PubMed
Close
,
Lies Langouche Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Lies Langouche in
Google Scholar
PubMed
Close
, and
Greet Van den Berghe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Greet Van den Berghe in
Google Scholar
PubMed
Close

In critically ill adults, high plasma cortisol in the face of low ACTH coincides with high pro-opiomelanocortin (POMC) levels. Glucocorticoids further lower ACTH without affecting POMC. We hypothesized that in pediatric cardiac surgery-induced critical illness, plasma POMC is elevated, plasma ACTH transiently rises intraoperatively but becomes suppressed post-operatively, and glucocorticoid administration amplifies this phenotype. From 53 patients (0–36 months), plasma was obtained pre-operatively, intraoperatively, and on post-operative days 1 and 2. Plasma was also collected from 24 healthy children. In patients, POMC was supra-normal pre-operatively (P < 0.0001) but no longer thereafter (P > 0.05). ACTH was never high in patients. While in glucocorticoid-naive patients ACTH became suppressed by post-operative day 1 (P < 0.0001), glucocorticoid-treated patients had already suppressed ACTH intraoperatively (P ≤ 0.0001). Pre-operatively high POMC, not accompanied by increased plasma ACTH, suggests a centrally activated HPA axis with reduced pituitary processing of POMC into ACTH. Increasing systemic glucocorticoid availability with glucocorticoid treatment accelerated the suppression of plasma ACTH.

Significance statement

Glucocorticoids are often administered during pediatric cardiac surgery. In critically ill children, endogenous systemic glucocorticoid availability is elevated already upon ICU admission while ACTH levels are normal. This hormonal constellation suggests the presence of active feedback inhibition of ACTH. In this study, we have documented that intraoperative administration of glucocorticoids accelerates the suppression of ACTH, resulting in low plasma ACTH already upon ICU admission. Pre-operative plasma POMC, the ACTH precursor, but not ACTH, was increased. This is compatible with a centrally activated HPA axis prior to surgery in young children but reduced processing of POMC into ACTH within the pituitary. These findings suggest that glucocorticoid treatment in the context of pediatric cardiac surgery may amplify pre-existing impaired pituitary processing of the prohormone POMC.

Open access