Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Georgios K Dimitriadis x
Clear All Modify Search
David C Llewellyn Department of Endocrinology ASO/EASO COM, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by David C Llewellyn in
Google Scholar
PubMed
Close
,
Rajaventhan Srirajaskanthan Neuroendocrine Tumour Unit, Kings Health Partners ENETS Centre of Excellence, Denmark Hill, London, UK
Faculty of Life Sciences and Medicine, Kings College London, London, UK

Search for other papers by Rajaventhan Srirajaskanthan in
Google Scholar
PubMed
Close
,
Royce P Vincent Faculty of Life Sciences and Medicine, Kings College London, London, UK
Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Royce P Vincent in
Google Scholar
PubMed
Close
,
Catherine Guy Department of Cellular Pathology, Royal Sussex County Hospital, Eastern Road, Brighton, UK

Search for other papers by Catherine Guy in
Google Scholar
PubMed
Close
,
Eftychia E Drakou Department of Clinical Oncology, Guy’s Cancer Centre – Guy’s and St Thomas’ NHS Foundation Trust, Great Maze Pond, London, UK

Search for other papers by Eftychia E Drakou in
Google Scholar
PubMed
Close
,
Simon J B Aylwin Department of Endocrinology ASO/EASO COM, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Neuroendocrine Tumour Unit, Kings Health Partners ENETS Centre of Excellence, Denmark Hill, London, UK

Search for other papers by Simon J B Aylwin in
Google Scholar
PubMed
Close
,
Ashley B Grossman Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
Barts and the London School of Medicine, Centre for Endocrinology, William Harvey Institute, London, UK
Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK

Search for other papers by Ashley B Grossman in
Google Scholar
PubMed
Close
,
John K Ramage Neuroendocrine Tumour Unit, Kings Health Partners ENETS Centre of Excellence, Denmark Hill, London, UK
Faculty of Life Sciences and Medicine, Kings College London, London, UK

Search for other papers by John K Ramage in
Google Scholar
PubMed
Close
, and
Georgios K Dimitriadis Department of Endocrinology ASO/EASO COM, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Faculty of Life Sciences and Medicine, School of Life Course Sciences, Obesity Immunometabolism and Diabetes Group, King’s College London, London, UK

Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
Close

Calcitonin-secreting neuroendocrine neoplasms of the lung are rare, with few cases reported in the literature. Differentiating between medullary thyroid carcinoma and an ectopic source of calcitonin secretion can represent a complex diagnostic conundrum for managing physicians, with cases of unnecessary thyroidectomy reported in the literature. This manuscript reports a case of ectopic hypercalcitonaemia from a metastatic neuroendocrine neoplasm of the lung with concurrent thyroid pathology and summarises the results of a systematic review of the literature. Medical Literature Analysis and Retrieval System Online, Excerpta Medica, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov and SCOPUS databases were systematically and critically appraised for all peer reviewed manuscripts that suitably fulfilled the inclusion criteria established a priori. The protocol for this systematic review was developed according to the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols, and followed methods outlined in The Cochrane Handbook for Systematic Reviews of Interventions. This systematic review is registered with PROSPERO. It is vital to consider diagnoses other than medullary thyroid carcinoma when presented with a patient with raised calcitonin, as it is not pathognomonic of medullary thyroid carcinoma. Lung neuroendocrine neoplasms can appear similar to medullary thyroid carcinoma histologically, they can secrete calcitonin and metastasize to the thyroid. Patients with medullary thyroid carcinoma may show stimulated calcitonin values over two or more times above the basal values, whereas calcitonin-secreting neuroendocrine neoplasms may or may not show response to stimulation tests. The present review summarises existing evidence from cases of ectopic hypercalcitonaemia to lung neuroendocrine neoplasms.

Open access
Magdalena Lech Faculty of Life Sciences and Medicine, School of Life Course Sciences, King’s College London, London, UK

Search for other papers by Magdalena Lech in
Google Scholar
PubMed
Close
,
Ruvini Ranasinghe Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Ruvini Ranasinghe in
Google Scholar
PubMed
Close
,
Royce P Vincent Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Faculty of Life Sciences and Medicine, School of Life Course Sciences, King’s College London, London, UK

Search for other papers by Royce P Vincent in
Google Scholar
PubMed
Close
,
David R Taylor Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by David R Taylor in
Google Scholar
PubMed
Close
,
Lea Ghataore Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Lea Ghataore in
Google Scholar
PubMed
Close
,
James Luxton Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by James Luxton in
Google Scholar
PubMed
Close
,
Fannie Lajeunesse-Trempe Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Quebec Heart and Lung Institute, Laval University, Quebec, Canada

Search for other papers by Fannie Lajeunesse-Trempe in
Google Scholar
PubMed
Close
,
Pia Roser Department of Endocrinology and Diabetes, University Medical Centre Hamburg Eppendorf, Hamburg, Germany

Search for other papers by Pia Roser in
Google Scholar
PubMed
Close
,
Eftychia E Drakou Department of Clinical Oncology, Guy's Cancer Centre - Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK

Search for other papers by Eftychia E Drakou in
Google Scholar
PubMed
Close
,
Ling Ling Chuah Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Ling Ling Chuah in
Google Scholar
PubMed
Close
,
Ashley B Grossman Green Templeton College, University of Oxford, Oxford, UK
Barts and the London School of Medicine, Centre for Endocrinology, William Harvey Institute, London, UK
Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK

Search for other papers by Ashley B Grossman in
Google Scholar
PubMed
Close
,
Simon J B Aylwin Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Simon J B Aylwin in
Google Scholar
PubMed
Close
, and
Georgios K Dimitriadis Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Obesity, Type 2 Diabetes and Immunometabolism Research Group, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Course Sciences, King’s College London, London, UK
Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, UK

Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
Close

Introduction

Adrenocortical carcinoma (ACC) is a rare malignancy of the adrenal cortex. Whilst surgery is the preferred treatment, adjunctive therapy with mitotane may be offered post-surgically to minimise the risk of recurrence or, in the absence of surgery, to attenuate progression.

Aim

The objective was to evaluate the effects of mitotane treatment on serum protein concentrations in patients treated for ACC with mitotane therapy and compare this to patients with other adrenal neoplasms and a normal pregnant cohort.

Methods

Serum cortisol, thyroid function tests, adrenocorticotrophic hormone (ACTH), cortisol-binding globulin (CBG), thyroxine-binding globulin (TBG), gonadotrophins and androgens were measured on plasma and serum samples. Thirty-five patients with ACC were included, and mitotane levels were noted to be sub-/supra-therapeutic. Data were tested for normality, reported as mean ± s.d., and compared to other two cohorts using paired-sample t-test with a 5% P-value for significance and a 95% CI.

Results

Patients on mitotane therapy had a higher mean serum CBG concentration compared to the adrenal neoplasm group (sub-therapeutic: 79.5 (95% CI: 33.6, 125.4 nmol/L), therapeutic: 85.3 (95% CI: 37.1–133.6 nmol/L), supra-therapeutic: 75.7 (95% CI: −19.3, 170.6 nmol/L) and adrenal neoplasm: 25.5 (95% CI: 17.5, 33.5 nmol/L). Negative correlations between serum cortisol and CBG concentration were demonstrated within the supra-therapeutic plasma mitotane and adrenal neoplasm groups.

Conclusion

Patients with ACC and therapeutic plasma mitotane concentrations had higher serum CBG concentrations compared to those with adrenal neoplasms or pregnant women, and higher serum cortisol. Whilst there was no direct correlation with cortisol and mitotane level, the negative correlation of cortisol with CBG may suggest that the direct effect of mitotane in increasing cortisol may also reflect that mitotane has a direct adrenolytic effect.

Open access
Nikolaos Kyriakakis Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK

Search for other papers by Nikolaos Kyriakakis in
Google Scholar
PubMed
Close
,
Marilena Giannoudi Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Marilena Giannoudi in
Google Scholar
PubMed
Close
,
Satish S Kumar Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Satish S Kumar in
Google Scholar
PubMed
Close
,
Khyatisha Seejore Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK

Search for other papers by Khyatisha Seejore in
Google Scholar
PubMed
Close
,
Georgios K Dimitriadis Department of Endocrinology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
Close
,
Harpal Randeva Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK

Search for other papers by Harpal Randeva in
Google Scholar
PubMed
Close
,
Adam Glaser Pediatric Oncology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Leeds Institute of Medical Research, University of Leeds, UK

Search for other papers by Adam Glaser in
Google Scholar
PubMed
Close
,
Michelle Kwok-Williams Clinical Oncology, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Michelle Kwok-Williams in
Google Scholar
PubMed
Close
,
Georgina Gerrard Clinical Oncology, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Georgina Gerrard in
Google Scholar
PubMed
Close
,
Carmel Loughrey Clinical Oncology, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Carmel Loughrey in
Google Scholar
PubMed
Close
,
Ahmed Al-Qaissi Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Ahmed Al-Qaissi in
Google Scholar
PubMed
Close
,
Ramzi Ajjan Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK

Search for other papers by Ramzi Ajjan in
Google Scholar
PubMed
Close
,
Julie Lynch Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Search for other papers by Julie Lynch in
Google Scholar
PubMed
Close
, and
Robert D Murray Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK

Search for other papers by Robert D Murray in
Google Scholar
PubMed
Close

Background

Survivors of childhood brain tumours (SCBT) and teenage and young adult cancer survivors have an adverse cardiovascular risk profile, which translates into an increased vascular mortality. Data on cardiovascular risk profiles in SCBT are limited, and furthermore, there are no data in adult-onset (AO) brain tumours.

Patients and

methods: Fasting lipids, glucose, insulin, 24-h blood pressure (BP), and body composition were measured in 36 brain tumour survivors (20 AO; 16 childhood-onset (CO)) and 36 age- and gender-matched controls.

Results

Compared with controls, patients had elevated total cholesterol (5.3 ± 1.1 vs 4.6 ± 1.0 mmol/L, P = 0.007), LDL-C (3.1 ± 0.8 vs 2.7 ± 0.9 mmol/L, P = 0.011), insulin (13.4 ± 13.1 vs 7.6 ± 3.3 miu/L, P = 0.014), and increased insulin resistance (homeostatic model assessment for insulin resistance (HOMA-IR) 2.90 ± 2.84 vs 1.66 ± 0.73, P = 0.016). Patients showed adverse body composition, with increased total body fat mass (FM) (24.0 ± 12.2 vs 15.7 ± 6.6 kg, P < 0.001) and truncal FM (13.0 ± 6.7 vs 8.2 ± 3.7 kg, P < 0.001).

After stratification by timing of onset, CO survivors showed significantly increased LDL-C, insulin, and HOMA-IR compared with controls. Body composition was characterized by the increased total body and truncal FM. Truncal fat mass was increased by 84.1% compared with controls. AO survivors showed similar adverse cardiovascular risk profiles, with increased total cholesterol and HOMA-IR. Truncal FM was increased by 41.0% compared with matched controls (P = 0.029). No difference in mean 24-h BP was noted between patients and controls irrespective of the timing of cancer diagnosis.

Conclusion

The phenotype of both CO and AO brain tumour survivors is characterized by an adverse metabolic profile and body composition, putatively placing long-term survivors at increased risk of vascular morbidity and mortality.

Open access
Jonathan Hazlehurst Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Jonathan Hazlehurst in
Google Scholar
PubMed
Close
,
Bernard Khoo Endocrinology, Division of Medicine, University College London, London, UK

Search for other papers by Bernard Khoo in
Google Scholar
PubMed
Close
,
Carolina Brito Lobato Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Medicine, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark

Search for other papers by Carolina Brito Lobato in
Google Scholar
PubMed
Close
,
Ibiyemi Ilesanmi Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK

Search for other papers by Ibiyemi Ilesanmi in
Google Scholar
PubMed
Close
,
Sally Abbott Department of Dietetics, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK

Search for other papers by Sally Abbott in
Google Scholar
PubMed
Close
,
Tin Chan Faculty of Medicine, Chinese University of Hong Kong, Hong Kong

Search for other papers by Tin Chan in
Google Scholar
PubMed
Close
,
Sanesh Pillai Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by Sanesh Pillai in
Google Scholar
PubMed
Close
,
Kate Maslin School of Nursing and Midwifery, University of Plymouth, Plymouth, UK

Search for other papers by Kate Maslin in
Google Scholar
PubMed
Close
,
Sanjay Purkayastha Brunel University, London, UK
Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, UK

Search for other papers by Sanjay Purkayastha in
Google Scholar
PubMed
Close
,
Barbara McGowan Endocrinology, Guys’ and St Thomas’s NHS Foundation Trust, London, UK

Search for other papers by Barbara McGowan in
Google Scholar
PubMed
Close
,
Rob Andrews University of Exeter Medical School, Exeter, UK

Search for other papers by Rob Andrews in
Google Scholar
PubMed
Close
,
Eveleigh Nicholson Portsmouth Hospitals University NHS Trust, Portsmouth, UK

Search for other papers by Eveleigh Nicholson in
Google Scholar
PubMed
Close
,
Katherine McCullough Royal Surrey County Hospital, Guildford, UK

Search for other papers by Katherine McCullough in
Google Scholar
PubMed
Close
,
Lorraine Albon University Hospitals Sussex NHS Foundation Trust, Worthing, UK

Search for other papers by Lorraine Albon in
Google Scholar
PubMed
Close
,
Rachel Batterham Endocrinology, Division of Medicine, University College London, London, UK

Search for other papers by Rachel Batterham in
Google Scholar
PubMed
Close
,
Georgios K Dimitriadis King's College Hospital NHS Foundation Trust, London, UK

Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
Close
,
Shareen Forbes BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by Shareen Forbes in
Google Scholar
PubMed
Close
,
Gavin Bewick School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK

Search for other papers by Gavin Bewick in
Google Scholar
PubMed
Close
, and
Tricia M-M Tan Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK

Search for other papers by Tricia M-M Tan in
Google Scholar
PubMed
Close

Post-bariatric hypoglycaemia (PBH) is typically a post-prandial hypoglycaemia occurring about 2–4 h after eating in individuals who have undergone bariatric surgery. PBH develops relatively late after surgery and often after discharge from post-surgical follow-up by bariatric teams, leading to variability in diagnosis and management in non-specialist centres.

Aim

The overall aim was to improve and standardise clinical practice in the diagnosis and management of PBH. The objectives were: (1) to undertake an up-to-date review of the current literature; (2) to formulate practical and evidence-based guidance regarding the diagnosis and treatment of PBH; (3) to recommend future avenues for research in this condition.

Method

A scoping review was undertaken after an extensive literature search. A consensus on the guidance and confidence in the recommendations was reached by the steering group authors prior to review by key stakeholders.

Outcome

We make pragmatic recommendations for the practical diagnosis and management of PBH, including criteria for diagnosis and recognition, as well as recommendations for research areas that should be explored.

Plain English summary

Post-bariatric hypoglycaemia (PBH) is a condition that commonly affects people who have undergone weight loss surgery. In this condition, people develop low blood sugar occurring about 2–4 h after meals, leading to debilitating symptoms such as hunger, sweating, anxiety, palpitations and even blackouts and fainting. PBH is becoming more common as weight loss surgery is being taken up by more people to help with their weight and to help with diabetes. The condition often develops after the patient has been discharged from follow-up after their surgery, which can lead to inconsistent diagnosis and treatment in non-specialist healthcare centres. The lack of clear information and evidence in the existing scientific literature further contributes to the variation in care. To address this problem, the Society for Endocrinology has created new guidelines to help healthcare professionals accurately diagnose and manage this condition. The guidelines were developed with input from dietitians, surgeons and doctors specialising in weight loss, and hormone specialists.

Open access