Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Fulvio Basolo x
  • All content x
Clear All Modify Search
Open access

Anello Marcello Poma, Riccardo Giannini, Paolo Piaggi, Clara Ugolini, Gabriele Materazzi, Paolo Miccoli, Paolo Vitti, and Fulvio Basolo

The distinction between follicular thyroid carcinomas (FTCs) and follicular-patterned benign lesions is almost impossible on fine-needle aspiration cytology. Furthermore, minimally invasive FTCs (MI-FTCs) with less than 4 vascular invasion foci generally have an excellent prognosis, but there are exceptions and, so far, no molecular marker appears able to identify them reliably. We aimed to distinguish benign lesions from low- and high-risk FTCs by a small-scale combination of genes. The expression analysis of 75 selected genes was performed on 18 follicular adenomas (FAs), 14 MI-FTCs and 6 widely invasive FTC (WI-FTCs). The mutational status of the RAS genes, TERT promoter and PAX8-PPARG rearrangements was also investigated. Seven samples were mutated, namely 3 MI-FTCs and 4 WI-FTCs. Twenty-five genes were differentially expressed (FDR <0.05) between FAs and WI-FTCs. Six of these (ECM1, RXRG, SDPR, SLC26A4, TIFF3, TIMP1) were also differently expressed among MI-FTCs and FAs or WI-FTCs and were considered to build a classification model, which was tested to classify samples according to their histological class. Hence, 31 out of 38 were correctly classified, and accuracy remained high after cross-validation (27/38). The 2 MI-FTCs incorrectly classified as WI-FTCs harbored both RAS and TERT promoter mutations. The capability of these six genes to stratify benign, low- and high-risk lesions appears to be promising in supporting the diagnosis of indeterminate thyroid nodules.

Open access

Cristina Romei, Teresa Ramone, Chiara Mulè, Alessandro Prete, Virginia Cappagli, Loredana Lorusso, Liborio Torregrossa, Fulvio Basolo, Raffele Ciampi, and Rossella Elisei

A statistically significant higher prevalence of the RET p.Met918Thr somatic mutation, identified by direct sequencing, was previously reported in MTC >2 cm than in smaller tumors. Aim of this study was to correlate the full RET and RAS mutation profile, identified by a Next Generation Sequencing approach, with the growth rate, proliferation and tumor size of MTC. Data of 149 sporadic MTC patients were correlated with RET mutations and Ki67 positivity. Eighty-one cases had a somatic RET mutation, 40 a RAS mutation and 28 were negative. A statistically significant higher prevalence of RET mutations was found in MTC >2 cm. A higher prevalence of RET more aggressive mutations, higher allelic frequencies and, higher percentage of Ki67 positive cells were found in larger tumors which had also a worse outcome.

Our study highlights the predominant role of RET somatic mutations in MTC tumorigenesis. We demonstrate that RET mutation prevalence and allelic frequency (AF) are significantly higher in larger tumors. Based on these results, we can conclude that RET mutated C-cells’s growth and proliferation are more rapid than those of non-mutated cells and give origin to bigger and more aggressive MTC.

Open access

Filomena Cetani, Chiara Banti, Elena Pardi, Simona Borsari, Paolo Viacava, Paolo Miccoli, Liborio Torregrossa, Fulvio Basolo, Maria Rosa Pelizzo, Massimo Rugge, Gianmaria Pennelli, Guido Gasparri, Mauro Papotti, Marco Volante, Edda Vignali, Federica Saponaro, and Claudio Marcocci

Inactivating mutations of the CDC73 tumor suppressor gene have been reported in parathyroid carcinomas (PC), in association with the loss of nuclear expression of the encoded protein, parafibromin. The aim of this study was to further investigate the role of the CDC73 gene in PC and evaluate whether gene carrier status and/or the loss of parafibromin staining might have an effect on the outcome of the disease. We performed genetic and immunohistochemical studies in parathyroid tumor samples from 35 patients with sporadic PC. Nonsense or frameshift CDC73 mutations were detected in 13 samples suitable for DNA sequencing. Six of these mutations were germline. Loss of parafibromin expression was found in 17 samples. The presence of the CDC73 mutation as well as the loss of parafibromin predicted a high likelihood of subsequent recurrence and/or metastasis (92.3%, P=0.049 and 94.1%, P=0.0017 respectively), but only the latter was associated with a decreased overall 5- and 10-year survival rates (59%, P=0.107, and 23%, P=0.0026 respectively). The presence of both the CDC73 mutation and loss of parafibromin staining compared with their absence predicted a lower overall survival at 10- (18 vs 84%, P=0.016) but not at 5-year follow-up. In conclusion, loss of parafibromin staining, better than CDC73 mutation, predicts the clinical outcome and mortality rate. The added value of CDC73 mutational analysis is the possibility of identifying germline mutations, which will prompt the screening of other family members.