Search Results
Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
Search for other papers by Siphiwe N Dlamini in
Google Scholar
PubMed
Search for other papers by Zané Lombard in
Google Scholar
PubMed
Search for other papers by Lisa K Micklesfield in
Google Scholar
PubMed
Search for other papers by Nigel Crowther in
Google Scholar
PubMed
Search for other papers by Shane A Norris in
Google Scholar
PubMed
Search for other papers by Tracy Snyman in
Google Scholar
PubMed
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Search for other papers by Andrew A Crawford in
Google Scholar
PubMed
Institute of Genetic Medicine to Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
Search for other papers by Julia H Goedecke in
Google Scholar
PubMed
Circulating glucocorticoids are associated with metabolic syndrome and related cardiometabolic risk factors in non-Africans. This study investigated these associations in Africans, whose metabolic phenotype reportedly differs from Europeans. Adiposity, blood pressure, glycaemia, insulin resistance, and lipid profile, were measured in 316 African men and 788 African women living in Soweto, Johannesburg. The 2009 harmonized criteria were used to define metabolic syndrome. Serum glucocorticoids were measured using liquid chromatography-mass spectrometry. Cortisol was associated with greater odds presenting with metabolic syndrome (odds ratio (95% CI) =1.50 (1.04, 2.17) and higher systolic (beta coefficient, β (95% CI) =0.04 (0.01, 0.08)) and diastolic (0.05 (0.02, 0.09)) blood pressure, but higher HDL (0.10 (0.02, 0.19)) and lower LDL (−0.14 (−0.24, −0.03)) cholesterol concentrations, in the combined sample of men and women. In contrast, corticosterone was only associated with higher insulin sensitivity (Matsuda index; 0.22 (0.03, 0.41)), but this was not independent of BMI. Sex-specific associations were observed, such that both cortisol and corticosterone were associated with higher fasting glucose (standardized β (95% CI): 0.24 (0.12, 0.36) for cortisol and 0.12 (0.01, 0.23) for corticosterone) and HbA1c (0.13 (0.01, 0.25) for cortisol and 0.12 (0.01, 0.24) for corticosterone) in men only, but lower HbA1c (0.10 (−0.20, −0.01) for cortisol and −0.09 (−0.18, −0.03) for corticosterone) in women only. Our study reports for the first time that associations between circulating glucocorticoid concentrations and key cardiometabolic risk factors exhibit both glucocorticoid- and sex-specificity in Africans.
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Search for other papers by Conor V Dolan in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Hilleke Hulshoff Pol in
Google Scholar
PubMed
Search for other papers by Dorret I Boomsma in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Objective
Sex differences in disease susceptibility might be explained by sexual dimorphism in hypothalamic-pituitary-adrenal axis activity, which has been postulated to emerge during puberty. However, studies conducted thus far lacked an assessment of Tanner pubertal stage. This study aimed to assess the contribution of pubertal development to sexual dimorphism in cortisol production and metabolism.
Methods
Participants (n = 218) were enrolled from a population-based Netherlands Twin Register. At the ages of 9, 12 and 17 years, Tanner pubertal stage was assessed and early morning urine samples were collected. Cortisol metabolites were measured with GC-MS/MS and ratios were calculated, representing cortisol metabolism enzyme activities, such as A-ring reductases, 11β-HSDs and CYP3A4. Cortisol production and metabolism parameters were compared between sexes for pre-pubertal (Tanner stage 1), early pubertal (Tanner stage 2–3) and late-pubertal (Tanner stage 4–5) stages.
Results
Cortisol metabolite excretion rate decreased with pubertal maturation in both sexes, but did not significantly differ between sexes at any pubertal stage, although in girls a considerable decrease was observed between early and late-pubertal stage (P < 0.001). A-ring reductase activity was similar between sexes at pre- and early pubertal stages and was lower in girls than in boys at late-pubertal stage. Activities of 11β-HSDs were similar between sexes at pre-pubertal stage and favored cortisone in girls at early and late-pubertal stages. Cytochrome P450 3A4 activity did not differ between sexes.
Conclusions
Prepubertally, sexes were similar in cortisol parameters. During puberty, as compared to boys, in girls the activities of A-ring reductases declined and the balance between 11β-HSDs progressively favored cortisone. In addition, girls showed a considerable decrease in cortisol metabolite excretion rate between early and late-pubertal stages. Our findings suggest that the sexual dimorphism in cortisol may either be explained by rising concentrations of sex steroids or by puberty-induced changes in body composition.