Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Bolette Hartmann x
Clear All Modify Search
Open access

Nicolai J Wewer Albrechtsen, Monika J Bak, Bolette Hartmann, Louise Wulff Christensen, Rune E Kuhre, Carolyn F Deacon and Jens J Holst

To investigate the stability of glucagon-like peptide 1 (GLP-1) and glucagon in plasma under short- and long-term storage conditions. Pooled human plasma (n=20), to which a dipeptidyl peptidase 4 (DPP4) inhibitor and aprotinin were added, was spiked with synthetic GLP-1 (intact, 7–36NH2 as well as the primary metabolite, GLP-1 9–36NH2) or glucagon. Peptide recoveries were measured in samples kept for 1 and 3 h at room temperature or on ice, treated with various enzyme inhibitors, after up to three thawing–refreezing cycles, and after storage at −20 and −80 °C for up to 1 year. Recoveries were unaffected by freezing cycles or if plasma was stored on ice for up to 3 h, but were impaired when samples stood at RT for more than 1 h. Recovery of intact GLP-1 increased by addition of a DPP4 inhibitor (no ice), but was not further improved by neutral endopeptidase 24.11 inhibitor or an inhibitor cocktail. GLP-1, but not glucagon, was stable for at least 1 year. Surprisingly, the recovery of glucagon was reduced by almost 50% by freezing compared with immediate analysis, regardless of storage time. Plasma handling procedures can significantly influence results of subsequent hormone analysis. Our data support addition of DPP4 inhibitor for GLP-1 measurement as well as cooling on ice of both GLP-1 and glucagon. Freeze–thaw cycles did not significantly affect stability of GLP-1 or glucagon. Long-term storage may affect glucagon levels regardless of storage temperature and results should be interpreted with caution.

Open access

Amalie Rasmussen Rasmussen Lanng, Lærke Smidt Gasbjerg, Natasha Chidekel Bergmann, Sigrid Bermann, Mads Marstand Helsted, Matthew Paul Gillum, Bolette Hartmann, Jens Juul Holst, Tina Vilsbøll and Filip K Knop

Background: Ingestion of the calorically dense compound alcohol may cause metabolic disturbances including hypoglycaemia, hepatic steatosis and insulin resistance, but the underlying mechanisms are uncertain. The gastrointestinal tract is well recognised as a major influencer on glucose, protein and lipid metabolism, but its role in alcohol metabolism remains unclear.

Objective: To examine the effects of oral and intravenous alcohol, respectively, on plasma concentrations of several gluco-regulatory hormones including serum/plasma insulin, C-peptide, glucagon, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF21).

Design and methods: In a double-blinded, randomised, crossover design, we subjected 12 healthy men to intragastric ethanol infusion (IGEI) and an isoethanolaemic intravenous ethanol infusion (IVEI) (0.7 g alcohol per kg body weight), respectively, on two separate experimental days.

Results: Isoethanolaemia during the two alcohol administration forms was obtained (P = 0.38). During both interventions, plasma glucose peaked after ~30 minutes and thereafter fell below baseline concentrations. GIP and GLP-1 concentrations were unaffected by the two interventions. Insulin concentrations were unaffected by IGEI but decreased during IVEI. C-peptide, insulin secretion rate and glucagon concentrations were lowered similarly during IGEI and IVEI. FGF21 concentrations increased dramatically (9-fold) and similarly during IGEI and IVEI.

Conclusions: Alcohol does not seem to affect the secretion of incretin hormones but decreased insulin and glucagon secretion independently of gut-derived factors. IGEI as well as IVEI potently stimulate FGF21 secretion indicating a gut-independent effect of alcohol on FGF21 secretion in humans.

Open access

Amalie R Lanng, Lærke S Gasbjerg, Natasha C Bergmann, Sigrid Bergmann, Mads M Helsted, Matthew P Gillum, Bolette Hartmann, Jens J Holst, Tina Vilsbøll and Filip K Knop

Background

Ingestion of the calorically dense compound alcohol may cause metabolic disturbances including hypoglycaemia, hepatic steatosis and insulin resistance, but the underlying mechanisms are uncertain. The gastrointestinal tract is well recognised as a major influencer on glucose, protein and lipid metabolism, but its role in alcohol metabolism remains unclear.

Objective

To examine the effects of oral and intravenous alcohol, respectively, on plasma concentrations of several gluco-regulatory hormones including serum/plasma insulin, C-peptide, glucagon, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF21).

Design and methods

In a double-blinded, randomised, crossover design, we subjected 12 healthy men to intragastric ethanol infusion (IGEI) and an isoethanolaemic intravenous ethanol infusion (IVEI) (0.7 g alcohol per kg body weight), respectively, on two separate experimental days.

Results

Isoethanolaemia during the two alcohol administration forms was obtained (P = 0.38). During both interventions, plasma glucose peaked after ~30 min and thereafter fell below baseline concentrations. GIP and GLP-1 concentrations were unaffected by the two interventions. Insulin concentrations were unaffected by IGEI but decreased during IVEI. C-peptide, insulin secretion rate and glucagon concentrations were lowered similarly during IGEI and IVEI. FGF21 concentrations increased dramatically (nine-fold) and similarly during IGEI and IVEI.

Conclusions

Alcohol does not seem to affect the secretion of incretin hormones but decreased insulin and glucagon secretion independently of gut-derived factors. IGEI as well as IVEI potently stimulate FGF21 secretion indicating a gut-independent effect of alcohol on FGF21 secretion in humans.