Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Baoyu Zhang x
Clear All Modify Search
Zhenyu Liu Department of Clinical Medicine, Beijing Luhe Hospital, Capital Medical University, Tongzhou District, Beijing, China

Search for other papers by Zhenyu Liu in
Google Scholar
PubMed
Close
,
Huixi Kong Department of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Haidian District, Beijing, China

Search for other papers by Huixi Kong in
Google Scholar
PubMed
Close
, and
Baoyu Zhang Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Tongzhou District, Beijing, China

Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
Close

To optimize the treatment plan for patients with type 2 diabetes mellitus (T2DM) and hyperuricemia, this narrative literature review summarizes the effect of antidiabetic drugs on serum uric acid (SUA) levels using data from observational studies, prospective clinical trials, post hoc analyses, and meta-analyses. SUA is an independent risk factor for T2DM, and evidence has shown that patients with both gout and T2DM exhibit a mutually interdependent effect on higher incidences. We find that insulin and dipeptidyl peptidase 4 inhibitor (DPP-4i) except linagliptin could increase the SUA and other drugs including metformin, thiazolidinediones (TZDs), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), linagliptin, sodium–glucose cotransporter 2 inhibitors (SGLT2i), and α-glucosidase inhibitors have a reduction effect on SUA. We explain the mechanisms of different antidiabetic drugs above on SUA and analyze them compared with actual data. For sulfonylureas, meglitinides, and amylin analogs, the underlying mechanism remains unclear. We think the usage of linagliptin and SGLT2i is the most potentially effective treatment of patients with T2DM and hyperuricemia currently. Our review is a comprehensive summary of the effects of antidiabetic drugs on SUA, which includes actual data, the mechanisms of SUA regulation, and the usage rate of drugs.

Open access
Rong Xu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Rong Xu in
Google Scholar
PubMed
Close
,
Difei Lian Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Difei Lian in
Google Scholar
PubMed
Close
,
Yan Xie Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Yan Xie in
Google Scholar
PubMed
Close
,
Lin Mu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Lin Mu in
Google Scholar
PubMed
Close
,
Yali Wu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Yali Wu in
Google Scholar
PubMed
Close
,
Zhilei Chen Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Zhilei Chen in
Google Scholar
PubMed
Close
, and
Baoyu Zhang Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
Close

Osteoporosis (OP) is a systemic bone disease in which bone density and quality decrease and bone fragility increases due to a variety of causes, making it prone to fractures. The development of OP is closely related to oxidative stress. Uric acid (UA) is the end product of purine metabolism in the human body. Extracellular UA has antioxidant properties and is thought to have a protective effect on bone metabolism. However, the process of UA degradation can lead to intracellular oxidative stress, which together with UA-induced inflammatory factors, leads to increased bone destruction. In addition, UA can inhibit vitamin D production, resulting in secondary hyperparathyroidism and further exacerbating UA-associated bone loss. This review summarizes the relationship between serum UA levels and bone mineral density, bone turnover markers, and so on, in the hope of providing new insights into the pathogenesis and treatment of OP.

Open access