Search Results

You are looking at 1 - 10 of 13 items for

  • Author: Anders Juul x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Mikkel Andreassen, Anders Juul, Ulla Feldt-Rasmussen, and Niels Jørgensen

Objective

Gonadotropins (luteinizing hormone (LH) and follicle-stimulating hormone (FSH)) are released from the pituitary gland and stimulate Leydig cells to produce testosterone and initiates spermatogenesis. Little is known about how and when the deterioration of semen quality occurs in patients with adult-onset gonadotropin insufficiency.

Design and methods

A retrospective study comprising 20 testosterone-deficient men (median age, 29 years) with acquired pituitary disease who delivered semen for cryopreservation before initiation of testosterone therapy. Semen variables and hormone concentrations were compared to those of young healthy men (n = 340).

Results

Thirteen of 20 patients (65%) and 82% of controls had total sperm counts above 39 million and progressive motile spermatozoa above 32% (P = 0.05). For the individual semen variables, there were no significant differences in semen volume (median (intraquartile range) 3.0 (1.3–6.8) vs 3.2 (2.3–4.3) mL, P = 0.47), sperm concentration 41 (11–71) vs 43 (22–73) mill/mL (P = 0.56) or total sperm counts (P = 0.66). One patient had azoospermia. Patients vs controls had lower serum testosterone 5.4 (2.2–7.6) vs 19.7 (15.5–24.5) nmol/L (P = 0.001), calculated free testosterone (cfT) 145 (56–183) vs 464 (359–574) pmol/L (P < 0.001), LH 1.5 (1.1–2.1) vs 3.1 (2.3–4.0) U/L (P = 0.002) and inhibin b (P < 0.001). Levels of FSH were similar (P = 0.63). Testosterone/LH ratio and cfT/LH ratio were reduced in patients (both P < 0.001).

Conclusions

Despite Leydig cell insufficiency in patients with acquired pituitary insufficiency, the majority presented with normal semen quality based on the determination of the number of progressively motile spermatozoa. In addition, the data suggest reduced LH bioactivity in patients with pituitary insufficiency.

Open access

Louise Færch, Anders Juul, Ulrik Pedersen-Bjergaard, and Birger Thorsteinsson

Objective

GH is implicated in the counter-regulatory response to hypoglycemia. We tested whether IGF1 levels are associated with occurrence of severe hypoglycemic events in patients with type 1 diabetes and whether the IGF1 concentration is influenced by glycemic control.

Methods

A total of 228 outpatients with type 1 diabetes were included in a post hoc analysis of a 1-year observational study on severe hypoglycemia. Serum total IGF1 was measured at entry into the study. The occurrence of severe episodes of hypoglycemia, mild symptomatic, and biochemical as well as hypoglycemia awareness status was assessed. Also patients were included in a multiple regression analysis to investigate the role of HbA1c in the IGF1 concentration.

Results

IGF1 levels were associated with neither severe hypoglycemia in the entire cohort (P=0.30) nor in any gender nor when confining the analysis to those with long-standing diabetes (>20 years) (n=112, P=0.68) and those with both long-standing diabetes and undetectable C-peptide (n=51, P=0.067). Levels of IGF1 were associated with neither mild symptomatic hypoglycemia (P=0.24) nor biochemical hypoglycemia (0.089) nor hypoglycemia awareness (P=0.16). At a multiple regression analysis, HbA1c was negatively associated with IGF1 (P=0.001).

Conclusion

In type 1 diabetes, circulating IGF1 levels are negatively associated with glycemic control. However, IGF1 levels were not associated with occurrence of hypoglycemia or hypoglycemia awareness in these patients.

Open access

Annette Mouritsen, Alexander Siegfried Busch, Lise Aksglaede, Ewa Rajpert-De Meyts, and Anders Juul

Objective

Only a few genetic loci are known to be associated with male pubertal events. The ability of excreting testosterone (T) and other steroids in the urine depends on sulfation and glucuronidation. One of several essential glucuronidases is encoded by the UGT2B17 gene. In a preliminary report, we found that homozygous deletion of UGT2B17 in boys was associated with lower urinary excretion of T. We hypothesized that boys with a lower glucuronidation capacity may have altered androgen action and excretion affecting pubarche, as this represents a T-dependent event.

Design, participants and measures

668 healthy boys (cross-sectional) aged 6.1–21.9 years (COPENHAGEN puberty study conducted from 2005 to 2006) were included. 65 of the boys where followed longitudinally every 6 months. Participants were genotyped for UGT2B17 copy number variation (CNV). Clinical pubertal staging including orchidometry, anthropometry and serum reproductive hormone levels.

Results

59 of the 668 boys (8.8%) presented with a homozygous deletion of UGT2B17 (del/del). These boys experienced pubarche at a mean age of 12.73 years (12.00–13.46) vs 12.40 years (12.11–12.68) in boys heterozygous for deletion of UGT2B17 (del/ins) vs 12.06 years (11.79–12.33) in boys with the wild-type genotype (ins/ins) (P = 0.029, corrected for BMI z-score). The effect accounted for 0.34 years delay per allele (95% CI: 0.03–0.64). A comparable trend was observed for onset of testicular enlargement >3 mL but did not reach significance.

Conclusion

CNV of UGT2B17 is a factor contributing to the timing of male pubarche.

Open access

Amalie Carlsson, Kaspar Sørensen, Anna-Maria Andersson, Hanne Frederiksen, and Anders Juul

Introduction

Bisphenol A and several of the most commonly used phthalates have been associated with adverse metabolic health effects such as obesity and diabetes. Therefore, we analyzed these man-made chemicals in first morning urine samples from 107 healthy normal-weight Danish children and adolescents.

Method

This was a cross-sectional study. Participants were recruited as part of the Copenhagen Puberty Study. The subjects were evaluated by an oral glucose tolerance test (OGTT), a dual-energy X-ray absorptiometry (DXA) scan, direct oxygen uptake measurement during cycle ergometry and fasting blood samples. First morning urine was collected and phthalate metabolites and BPA were measured by liquid chromatography-tandem mass spectrometry (LC–MS/MS) with prior enzymatic deconjugation. Individual chemical concentrations were divided into tertiles and analyzed in relation to biological outcome.

Results

Children in the lowest tertile of urinary BPA had significantly higher peak insulin levels during OGTT (P = 0.01), lower insulin sensitivity index (P < 0.01), higher leptin (P = 0.03), triglyceride (P < 0.01) and total cholesterol levels (P = 0.04), lower aerobic fitness (P = 0.02) and a tendency toward higher fat mass index (P = 0.1) compared with children in the highest tertile for uBPA. No significant differences in anthropometrics, body composition or glucose metabolism were associated with any of the phthalate metabolites measured.

Conclusion

This pilot study on healthy normal-weight children suggests an inverse association between BPA and insulin resistance. Our findings contrast other cross-sectional studies showing a positive association for BPA, which may be due to confounding or reverse causation because diet is an important source of both BPA exposure and obesity.

Open access

Kristian Almstrup, Hanne Frederiksen, Anna-Maria Andersson, and Anders Juul

Puberty marks a transition period, which leads to the attainment of adult sexual maturity. Timing of puberty is a strongly heritable trait. However, large genetic association studies can only explain a fraction of the observed variability and striking secular trends suggest that lifestyle and/or environmental factors are important. Using liquid-chromatography tandem-mass-spectrometry, we measured endocrine-disrupting chemicals (EDCs; triclosan, bisphenol A, benzophenone-3, 2,4-dichlorophenol, 11 metabolites from 5 phthalates) in longitudinal urine samples obtained biannually from peri-pubertal children included in the COPENHAGEN puberty cohort. EDC levels were associated with blood DNA methylation profiles from 31 boys and 20 girls measured both pre- and post-pubertally. We found little evidence of single methylation sites that on their own showed association with urinary excretion levels of EDCs obtained either the same-day or measured as the yearly mean of dichotomized EDC levels. In contrast, methylation of several promoter regions was found to be associated with two or more EDCs, overlap with known gene–chemical interactions, and form a core network with genes known to be important for puberty. Furthermore, children with the highest yearly mean of dichotomized urinary phthalate metabolite levels were associated with higher promoter methylation of the thyroid hormone receptor interactor 6 gene (TRIP6), which again was mirrored by lower circulating TRIP6 protein levels. In general, the mean TRIP6 promoter methylation was mirrored by circulating TRIP6 protein levels. Our results provide a potential molecular mode of action of how exposure to environmental chemicals may modify pubertal development.

Open access

Iben Katinka Greiber, Casper P Hagen, Alexander Siegfried Busch, Mikkel Grunnet Mieritz, Lise Aksglæde, Katharina Main, Kristian Almstrup, and Anders Juul

Objective

Fetal anti-Müllerian hormone (AMH) is responsible for normal male sexual differentiation, and circulating AMH is used as a marker of testicular tissue in newborns with disorders of sex development. Little is known about the mechanism of action in postnatal life. A recent genome wide association study (GWAS) reported genetic variation of AMH affecting AMH levels in young men. This study investigated the effect of genetic variation of AMH and AMH type II receptor (AMHR2) (AMHrs10407022 T>G and AMHR2rs11170547 C>T) on circulating reproductive hormone levels and pubertal onset in boys and girls.

Design and methods

This study is a combined longitudinal and cross-sectional study in healthy Danish boys and girls from the general population. We included 658 boys aged 5.8–19.8 years and 320 girls aged 5.6–16.5 years. The main outcome measures were genotyping of AMH and AMHR2, pubertal staging and serum levels of reproductive hormones.

Results

AMHrs10407022T>G was associated with higher serum levels of AMH in prepubertal boys (TT: 575 pmol/L vs TG: 633 pmol/L vs GG: 837 pmol/L, P = 0.002) and adolescents (TT: 44 pmol/L vs TG: 58 pmol/L vs GG: 79 pmol/L, P < 0.001). Adolescent boys carrying the genetic variation also had lower levels of LH (TT: 3.0 IU/L vs TG: 2.8 IU/L vs GG: 1.8 IU/L, P = 0.012). Hormone levels in girls and pubertal onset in either sex did not seem to be profoundly affected by the genotypes.

Conclusion

Our findings support recent GWAS results in young adults and expand our understanding of genetic variation affecting AMH levels even in boys prior to the pubertal decline of circulating AMH.

Open access

Simon Chang, Christian Fynbo Christiansen, Anders Bojesen, Svend Juul, Anna-Marie B Münster, and Claus H Gravholt

Objectives

Klinefelter syndrome (KS), 47,XXY, can be viewed as a disease model for investigating the risk of thrombosis in male hypogonadism and the subsequent risk related to testosterone treatment. We describe rates of thrombotic risk factors, thrombosis and thrombosis mortality in KS and the association with testosterone treatment.

Methods

National registry-based matched cohort study with follow-up from 1995 to 2016 set in Denmark. For the study, 1155 men with KS were each matched by year and month of birth to 100 men from the background population. First thrombotic events and thrombosis mortality was evaluated by event rates and hazard ratios (HRs) and by applying testosterone treatment as a time-dependent covariate.

Results

The KS cohort had higher incidence of venous thromboembolism relative to the comparison cohort (HR, 3.95; 95% CI, 2.83–5.52). Total thrombotic deaths were increased in KS (HR, 1.76; 95% CI, 1.18–2.62), and all-cause mortality was increased in KS following arterial thrombosis (HR 1.73; 95% CI 1.22–2.47). Only 48.7% of men with KS redeemed prescriptions for testosterone. Untreated men with KS were on average born 12 years before those treated, and the majority of untreated men with KS with available biochemistry were hypogonadal. Testosterone treatment in KS was associated with a non-significant decrease in venous thromboembolism and thrombotic deaths.

Conclusion

Thrombosis and thrombotic deaths are increased in KS. Only half of the men with KS ever received testosterone treatment, despite overt hypogonadism in the non-treated. Testosterone treatment in Klinefelter syndrome was insignificantly associated with lower incidence rates of venous thrombosis and thrombotic deaths.

Open access

Sidsel Mathiesen, Kaspar Sørensen, Marianne Ifversen, Casper P Hagen, Jørgen Holm Petersen, Anders Juul, and Klaus Müller

Objectives

Longitudinal assessment of testicular function after pediatric hematopoietic stem cell transplantation (HSCT) is needed to guide clinical follow-up. We investigated dynamics in male reproductive hormones after pediatric HSCT, focusing on pubertal timing and associations with testosterone deficiency and azoospermia in adulthood.

Methods

This retrospective, longitudinal study included 39 survivors median 19 years after pediatric HSCT. Serum concentrations of LH, testosterone, FSH, and inhibin B from the time of HSCT, during puberty, and into adulthood were analyzed. Pubertal timing (rise in LH and testosterone) was compared to a reference cohort of 112 healthy boys. Associations between reproductive hormone levels during puberty and adult testicular function (including semen quality) were investigated.

Results

Pubertal induction with testosterone was needed in 6/26 patients who were prepubertal at HSCT. In the remaining patients, pubertal timing was comparable to the reference cohort. However, 9/33 patients (without pubertal induction) developed testosterone deficiency in early adulthood, which was associated with higher LH levels from age 14 to 16 years. Azoospermia in adulthood was found in 18/26 patients without testosterone substitution. Higher FSH and lower inhibin B levels from mid-pubertal age were associated with azoospermia in adulthood, in patients being prepubertal at HSCT.

Conclusion

Our results indicate a substantial risk of deterioration in testicular function after pediatric HSCT, despite normal pubertal timing. Although reproductive hormone levels from mid-puberty indicated adult testicular function, prolonged follow-up into adulthood is needed in these patients, including clinical examination, reproductive hormone analysis, and semen sample for patients interested in their fertility potential.

Open access

Clara Lundetoft Clausen, Åse Krogh Rasmussen, Trine Holm Johannsen, Linda Maria Hilsted, Niels Erik Skakkebæk, Pal Bela Szecsi, Lise Pedersen, Thomas Benfield, and Anders Juul

The hypothalamic–pituitary–thyroid hormone axis might be affected in COVID-19, but existing studies have shown varying results. It has been hypothesized that hyperinflammation, as reflected by the secretion of cytokines, might induce thyroid dysfunction among patients with COVID-19. We explored thyroid hormone involvement in the acute phase of symptomatic COVID-19 and its possible associations with cytokine levels and mortality risk. This was a single-center study of 116 consecutive patients hospitalized for moderate-to-severe COVID-19 disease. Serum concentrations of thyroid-stimulating hormone (TSH), free thyroxine (T4), and 45 cytokines/chemokines were measured in all patients within 3 days of admission. Data were extracted retrospectively through a manual review of health records. At admission, 95 (81.9%) were euthyroid; while 21 (18.1%) had biochemically thyroid dysfunction including subclinical thyrotoxicosis (n = 11), overt thyrotoxicosis (n = 2), hypothyroidism (n = 1), non-thyroidal illness (n = 2), and normal TSH but high free T4 (n = 5). TSH levels were inversely correlated with IL-8 (r s = –0.248), IL-10 (r s = –0.253), IL-15 (r s = –0.213), IP-10 (r s = –0.334), and GM-CSF (r s = –0.254). Moreover, IL-8 levels, IP-10, and GM-CSF were significantly higher in patients with serum TSH < 0.4 mIU/L. Lastly, a two-fold increment of IL-8 and IL-10 was associated with significantly higher odds of having TSH < 0.4 mIU/L (odds ratio 1.86 (1.11–3.10) and 1.78 (1.03–3.06)). Serum TSH was not associated with 30- or 90-day mortality. In conclusion, this study suggests that fluctuations of TSH levels in patients with COVID-19 may be influenced by circulating IL-8, IL-10, IL-15, IP-10, and GM-CSF as previously described in autoimmune thyroid diseases.

Open access

Clara Lundetoft Clausen, Trine Holm Johannsen, Niels Erik Skakkebæk, Hanne Frederiksen, Camilla Koch Ryrsø, Arnold Matovu Dungu, Maria Hein Hegelund, Daniel Faurholt-Jepsen, Rikke Krogh-Madsen, Birgitte Lindegaard Madsen, Allan Linneberg, Line Lund Kårhus, Anders Juul, and Thomas Benfield

Aim: To explore pituitary-gonadal hormone concentrations and assess their association to inflammation, severe respiratory failure and mortality in hospitalized men and women with coronavirus disease 2019 (COVID-19) and compare these to hormone concentrations in hospitalized patients with bacterial community-acquired pneumonia (CAP), influenza virus CAP, and to concentrations in a reference group of healthy individuals.

Methods: Serum concentrations of testosterone, estrone sulfate, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and interleukin-6 (IL-6) were measured within three days of admission. Associations were assessed by logistic regression analysis in patients with COVID-19, and results were reported as odds ratio with 95% confidence interval per two-fold reduction after adjustment for age, comorbidities, days to sample collection, and IL-6 concentrations.

Results: In total 278 with COVID-19, 21 with influenza virus CAP, and 76 with bacterial CAP were included. Testosterone concentrations were suppressed in men hospitalized with COVID-19, bacterial- and influenza virus CAP and moderately suppressed in women. Reductions in testosterone (OR 3.43 [1.14-10.30], p=0.028) and LH (OR 2.51 [1.28-4.92], p=0.008) were associated higher odds of mechanical ventilation (MV) in men with COVID-19. In women with COVID-19, reductions in LH (OR 3.34 [1.02-10-90], p=0.046) and FSH (OR 2.52 [1.01-6.27], p=0.047) were associated with higher odds of MV.

Conclusion: Low testosterone and LH concentrations were predictive of severe respiratory failure in men with COVID-19, whereas low concentrations of LH and FSH predicted severe respiratory failure in women with COVID-19.