Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Alan D Rogol x
Clear All Modify Search
Alan D Rogol Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close

The overall incidence of sex chromosome aneuploidies is approximately 1 per 500 live-born infants, but far more common at conception. I shall review the fertility aspects of the sex chromosome trisomies, XXY, XYY, and XXX, with special reference to the karyotype 45,X/47,XXX. Each has a ‘specific’ (but variable) phenotype but may be modified by mosaicism. Although the alterations in the hypothalamic–pituitary–gonadal axis are important (and discussed), the emphasis here is on potential fertility and if one might predict that at various epochs within an individual’s life span: fetal, ‘mini’-puberty, childhood, puberty, and adulthood. The reproductive axis is often affected in females with the 47,XXX karyotype with diminished ovarian reserve and accelerated loss of ovarian function. Fewer than 5% of females with Turner syndrome have the 45,X/47,XXX karyotype. They have taller stature and less severe fertility issues compared to females with the 45,X or other forms of Turner syndrome mosaicism. For the 47,XXY karyotype, non-obstructive azoospermia is almost universal with sperm retrieval by micro-testicular sperm extraction possible in slightly fewer than half of the men. Men with the 47,XYY karyotype have normal to large testes and much less testicular dysfunction than those with the 47,XXY karyotype. They do have a slight increase in infertility compared to the reference population but not nearly as severe as those with the 47,XXY karyotype. Assisted reproductive technology, especially micro-testicular sperm extraction, has an important role, especially for those with 47,XXY; however, more recent data show promising techniques for the in vitro maturation of spermatogonial stem cells and 3D organoids in culture. Assisted reproductive technology is more complex for the female, but vitrification of oocytes has shown promising advances.

Open access
Rebeca Esquivel-Zuniga Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Rebeca Esquivel-Zuniga in
Google Scholar
PubMed
Close
and
Alan D Rogol Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close

Hypogonadism is a clinical syndrome resulting from failure to produce physiological concentrations of sex steroid hormones with accompanying symptoms, such as slowed growth and delayed pubertal maturation. Hypogonadism may arise from gonadal disease (primary hypogonadism), dysfunction of the hypothalamic–pituitary axis (secondary hypogonadism) or functional hypogonadism. Disrupted puberty (delayed or absent) leading to hypogonadism can have a significant impact on both the physical and psychosocial well-being of adolescents with lasting effects. The diagnosis of hypogonadism in teenagers can be challenging as the most common cause of delayed puberty in both sexes is self-limited, also known as constitutional delay of growth and puberty (CDGP). Although an underlying congenital cause should always be considered in a teenager with hypogonadism, acquired conditions such as obesity, diabetes mellitus, other chronic diseases and medications have all been associated with low sex steroid hormone levels. In this review, we highlight some forms of functional hypogonadism in adolescents and the clinical challenges to differentiate normal variants from pathological states.

Open access
Kevin C J Yuen Departments of Neuroendocrinology and Neurosurgery, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, United States

Search for other papers by Kevin C J Yuen in
Google Scholar
PubMed
Close
,
Gudmundur Johannsson Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Close
,
Ken K Y Ho The Garvan Institute of Medical Research and the Faculty of Medicine, University of New South Wales, Sydney, Australia

Search for other papers by Ken K Y Ho in
Google Scholar
PubMed
Close
,
Bradley S Miller Pediatric Endocrinology, University of Minnesota Medical School, M Health Fairview Masonic Children’s Hospital, Minneapolis, Minnesota, United States

Search for other papers by Bradley S Miller in
Google Scholar
PubMed
Close
,
Ignacio Bergada Centro de Investigaciones Endocrinológicas "Dr César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

Search for other papers by Ignacio Bergada in
Google Scholar
PubMed
Close
, and
Alan D Rogol Pediatric Diabetes and Endocrinology, University of Virginia, Charlottesville, Virginia, United States

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close

Growth hormone deficiency (GHD) is a clinical syndrome that can manifest either as isolated or associated with additional pituitary hormone deficiencies. Although diminished height velocity and short stature are useful and important clinical markers to consider testing for GHD in children, the signs and symptoms of GHD are not always so apparent in adults. Quality of life and metabolic health are often impacted in patients with GHD; thus, making an accurate diagnosis is important so that appropriate growth hormone (GH) replacement therapy can be offered to these patients. Screening and testing for GHD require sound clinical judgment that follows after obtaining a complete medical history of patients with a hypothalamic–pituitary disorder and a thorough physical examination with specific features for each period of life, while targeted biochemical testing and imaging are required to confirm the diagnosis. Random measurements of serum GH levels are not recommended to screen for GHD (except in neonates) as endogenous GH secretion is episodic and pulsatile throughout the lifespan. One or more GH stimulation tests may be required, but existing methods of testing might be inaccurate, difficult to perform, and can be imprecise. Furthermore, there are multiple caveats when interpreting test results including individual patient factors, differences in peak GH cut-offs (by age and test), testing time points, and heterogeneity of GH and insulin-like growth factor 1 assays. In this article, we provide a global overview of the accuracy and cut-offs for diagnosis of GHD in children and adults and discuss the caveats in conducting and interpreting these tests.

Open access
Claus H Gravholt Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close
,
Alberto Ferlin Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy

Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Close
,
Joerg Gromoll Centre of Reproductive Medicine and Andrology, Münster, Germany

Search for other papers by Joerg Gromoll in
Google Scholar
PubMed
Close
,
Anders Juul Department of Growth and Reproduction Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close
,
Armin Raznahan Section on Developmental Neurogenomics, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Armin Raznahan in
Google Scholar
PubMed
Close
,
Sophie van Rijn Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands

Search for other papers by Sophie van Rijn in
Google Scholar
PubMed
Close
,
Alan D Rogol Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close
,
Anne Skakkebæk Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close
,
Nicole Tartaglia Department of Pediatrics, Developmental Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA

Search for other papers by Nicole Tartaglia in
Google Scholar
PubMed
Close
, and
Hanna Swaab Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands

Search for other papers by Hanna Swaab in
Google Scholar
PubMed
Close

The 3rd International Workshop on Klinefelter Syndrome, Trisomy X, and 47,XYY syndrome was held in Leiden, the Netherlands, on September 12–14, 2022.

Here, we review new data presented at the workshop and discuss scientific and clinical trajectories. We focus on shortcomings in knowledge and therefore point out future areas for research.

We focus on the genetics and genomics of supernumerary sex chromosome syndromes with new data being presented. Most knowledge centre specifically on Klinefelter syndrome, where aspects on testosterone deficiency and the relation to bone, muscle and fat were discussed, as was infertility and the treatment thereof. Both trisomy X and 47,XYY syndrome are frequently affected by infertility.

Transitioning of males with Klinefelter syndrome was addressed, as this seemingly simple process in practise is often difficult.

It is now realized that neurocognitive changes are pervasive in all supernumerary sex chromosome syndromes, which were extensively discussed. New intervention projects were also described, and exciting new data concerning these were presented.

Advocacy organizations were present, describing the enormous burden carried by parents when having to explain their child’s specific syndrome to most professionals whenever in contact with health care and education systems. It was also pointed out that most countries do not have health care systems that diagnose patients with supernumerary sex chromosome syndromes, thus pinpointing a clear deficiency in the current genetic testing and care models.

At the end of the workshop, a roadmap towards the development of new international clinical care guidelines for Klinefelter syndrome was decided.

Open access