Search Results

You are looking at 1 - 1 of 1 items for :

  • Author: Tereza Planck x
Clear All Modify Search
Bushra Shahida Department of Clinical Sciences, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
Department of Diabetes & Endocrinology, Skåne University Hospital, Malmö, Sweden

Search for other papers by Bushra Shahida in
Google Scholar
PubMed
Close
,
Tereza Planck Department of Clinical Sciences, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
Department of Diabetes & Endocrinology, Skåne University Hospital, Malmö, Sweden

Search for other papers by Tereza Planck in
Google Scholar
PubMed
Close
,
Tania Singh Department of Clinical Sciences, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden

Search for other papers by Tania Singh in
Google Scholar
PubMed
Close
,
Peter Åsman Department of Clinical Sciences Malmö, Ophthalmology, Lund University, Malmö, Sweden
Department of Ophthalmology, Skåne University Hospital, Malmö, Sweden

Search for other papers by Peter Åsman in
Google Scholar
PubMed
Close
, and
Mikael Lantz Department of Clinical Sciences, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
Department of Diabetes & Endocrinology, Skåne University Hospital, Malmö, Sweden

Search for other papers by Mikael Lantz in
Google Scholar
PubMed
Close

Graves’ disease (GD) and Graves’ ophthalmopathy (GO) are complex autoimmune diseases. This study delved into the impact of cigarette smoke extract (CSE), simvastatin, and/or diclofenac on peripheral blood mononuclear cells (PBMCs). Specifically, we explored alterations in IL-1B, IL-6, PTGS2 expression, B- and T-lymphocyte proliferation, and Immunoglobulin G (IgG) production. We also assessed IGF1’s influence on B- and T-lymphocyte proliferation. PBMCs from Graves’ patients were exposed to CSE with/without simvastatin and/or diclofenac. Gene and protein expression was compared with untreated PBMCs. B- and T-lymphocyte proliferation was assessed following IGF1 treatment. PBMCs exposed to CSE exhibited increased expression of IL-1B (6-fold), IL-6 (10-fold), and PTGS2 (5.6-fold), and protein levels of IL-1B (4-fold), IL-6 (16-fold) and PGE2 (3.7-fold) compared with untreated PBMCs. Simvastatin and/or diclofenac downregulated the expression of PTGS2 (0.5-fold), IL-6 (0.4-fold), and IL-1B (0.6-fold), and the protein levels of IL-1B (0.6-fold), IL-6 (0.6-fold), and PGE2 (0.6-fold) compared with untreated PBMCs. CSE exposure in PBMCs increased the proliferation of B and T lymphocytes by 1.3-fold and 1.4-fold, respectively, compared with untreated. CSE exposure increased IgG (1.5-fold) in supernatant from PBMCs isolated from Graves’ patients. IGF1 treatment increased the proliferation of B and T lymphocytes by 1.6-fold. Simvastatin downregulated the proliferation of B and T lymphocytes by 0.7-fold. Our study shows that CSE significantly upregulated the expression and release of the inflammatory markers PTGS2, IL-6 and IL-1B,the IgG levels, and the proliferation of B and T lymphocytes. Additionally, IGF1 increased the proliferation of B and T lymphocytes. Finally, these effects were decreased by diclofenac and/or simvastatin treatment.

Open access