Search Results
You are looking at 1 - 2 of 2 items for :
- Author: Qi Zhang x
- Metabolic Syndrome and Diabetes x
Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
Search for other papers by Chenmin Wei in
Google Scholar
PubMed
Search for other papers by Zichen Zhang in
Google Scholar
PubMed
Search for other papers by Qi Fu in
Google Scholar
PubMed
Search for other papers by Yunqiang He in
Google Scholar
PubMed
Search for other papers by Tao Yang in
Google Scholar
PubMed
Search for other papers by Min Sun in
Google Scholar
PubMed
Objective
Lipotoxicity-induced pancreatic β cell-dysfunction results in decreased insulin secretion in response to multiple stimulus. In this study, we investigated the reversible effects of palmitate (PA) or oleate (OA) on insulin secretion and the relationship with pancreatic β-cell ATP-sensitive potassium (KATP) channels.
Methods
MIN6 cells were treated with PA and OA for 48 h and then washed out for 24 h to determine the changes in expression and endocytosis of the KATP channels and glucose-stimulated insulin secretion (GSIS) and sulfonylurea-stimulated insulin secretion (SU-SIS).
Results
MIN6 cells exposed to PA or OA showed both impaired GSIS and SU-SIS; the former was not restorable, while the latter was reversible with washout of PA or OA. Decreased expressions of both total and surface Kir6.2 and SUR1 and endocytosis of KATP channels were observed, which were also recoverable after washout. When MIN6 cells exposed to free fatty acids (FFAs) were cotreated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or dynasore, we found that endocytosis of KATP channels did not change significantly by AICAR but was almost completely blocked by dynasore. Meanwhile, the inhibition of endocytosis of KATP channels after washout could be activated by PIP2. The recovery of SU-SIS after washout was significantly weakened by PIP2, but the decrease of SU-SIS induced by FFAs was not alleviated by dynasore.
Conclusions
FFAs can cause reversible impairment of SU-SIS on pancreatic β cells. The reversibility of the effects is partial because of the changes of expression and endocytosis of Kir6.2 and SUR1 which was mediated by dynamin.
Search for other papers by Xiaobing Lu in
Google Scholar
PubMed
Search for other papers by Jiang Yue in
Google Scholar
PubMed
Search for other papers by Qianjing Liu in
Google Scholar
PubMed
Search for other papers by Shengyun He in
Google Scholar
PubMed
Search for other papers by Ying Dong in
Google Scholar
PubMed
Search for other papers by Ming Zhang in
Google Scholar
PubMed
Search for other papers by Yicheng Qi in
Google Scholar
PubMed
Search for other papers by Minglan Yang in
Google Scholar
PubMed
Search for other papers by Wang Zhang in
Google Scholar
PubMed
Search for other papers by Hua Xu in
Google Scholar
PubMed
Search for other papers by Qing Lu in
Google Scholar
PubMed
Search for other papers by Jing Ma in
Google Scholar
PubMed
Background
The aim of this study was to address the intramuscular adipose tissue (IMAT) accumulation in the lower extremities and further detect the relationship between adipose tissue (AT) distribution in the muscle and glucose metabolism in subjects with obesity.
Methods
We conducted a cross-sectional study in 120 Chinese obese adults (80 male and 40 female) with BMI ≥ 28 kg/m2. MRI was applied to access the IMAT content in lower extremities. The oral glucose tolerance test was used to evaluate the glucose metabolism and insulin secretion in all individuals. The correlations between glucose metabolism and the fat content of the lower extremities were further assessed.
Results
Among 120 included subjects, 54 were classified as subjects with normal glucose tolerance (NGT) and 66 with impaired glucose regulation (IGR). We presented that those with IGR had higher fat accumulation in semitendinosus, adductor magnus, gracilis and sartorius than those with NGT (all P < 0.05). In sex-specific analyses, females have higher IMAT in adductor magnus than males (P < 0.001). Males with IGR had higher fat fraction of semitendinosus and sartorius than those with NGT (P = 0.020, P = 0.014, respectively). Logistic regression analyses revealed that IMAT content in semitendinosus was the independent factor of IGR in individuals with obesity after adjustment for age, gender, triglycerides, creatinine and albumin (odds ratio: 1.13, 95% CI: 1.02–1.26, P = 0.024).
Conclusions
Increased adipose tissue accumulation in thigh muscles was associated with glucose dysregulation in patients with obesity. IMAT content in semitendinosus may serve as a possible risk factor for impaired glucose metabolism.