Search Results
Search for other papers by Till Ittermann in
Google Scholar
PubMed
Department of Zoology, Islamia College Peshawar (CU), Peshawar, Pakistan
Search for other papers by Rehman Mehmood Khattak in
Google Scholar
PubMed
Search for other papers by Marcello R P Markus in
Google Scholar
PubMed
Search for other papers by Jens-Peter Kühn in
Google Scholar
PubMed
Search for other papers by Marie-Luise Kromrey in
Google Scholar
PubMed
Search for other papers by Giovanni Targher in
Google Scholar
PubMed
Search for other papers by Antje Steveling in
Google Scholar
PubMed
DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
Search for other papers by Matthias Nauck in
Google Scholar
PubMed
Search for other papers by Henry Völzke in
Google Scholar
PubMed
The associations of thyroid function parameters with non-alcoholic fatty liver disease (NAFLD) and hepatic iron overload are not entirely clear. We have cross-sectionally investigated these associations among 2734 participants of two population-based cross-sectional studies of the Study of Health in Pomerania. Serum levels of thyroid-stimulating hormone (TSH), free tri-iodothyronine (fT3), and free thyroxine (fT4) levels were measured. Liver fat content (by proton-density fat fraction) as well as hepatic iron content (by transverse relaxation rate; R2*) were assessed by quantitative MRI. Thyroid function parameters were associated with hepatic fat and iron contents by median and logistic regression models adjusted for confounding. There were no associations between serum TSH levels and liver fat content, NAFLD, or hepatic iron overload. Serum fT4 levels were inversely associated with liver fat content, NAFLD, hepatic iron contents, and hepatic iron overload. Serum fT3 levels as well as the fT3 to fT4 ratio were positively associated with hepatic fat, NAFLD, hepatic iron contents, but not with hepatic iron overload. Associations between fT3 levels and liver fat content were strongest in obese individuals, in which we also observed an inverse association between TSH levels and NAFLD. These findings might be the result of a higher conversion of fT4 to the biologically active form fT3. Our results suggest that a subclinical hyperthyroid state may be associated with NAFLD, particularly in obese individuals. Furthermore, thyroid hormone levels seem to be more strongly associated with increased liver fat content compared to hepatic iron content.
Search for other papers by Line Tang Møllehave in
Google Scholar
PubMed
Search for other papers by Marie Holm Eliasen in
Google Scholar
PubMed
Search for other papers by Ieva Strēle in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
Université Libre de Bruxelles, Bruxelles, Belgium
Search for other papers by Rodrigo Moreno-Reyes in
Google Scholar
PubMed
Search for other papers by Ludmila B Ivanova in
Google Scholar
PubMed
School of Medicine, Zagreb, Croatia
Search for other papers by Zvonko Kusić in
Google Scholar
PubMed
Search for other papers by Iris Erlund in
Google Scholar
PubMed
Search for other papers by Till Ittermann in
Google Scholar
PubMed
Search for other papers by Endre V Nagy in
Google Scholar
PubMed
Department of Clinical Nutrition, Landspitali-National University Hospital, Reykjavik, Iceland
Search for other papers by Ingibjorg Gunnarsdottir in
Google Scholar
PubMed
Goldman School of Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel
Search for other papers by Jonathan Eli Arbelle in
Google Scholar
PubMed
Search for other papers by Aaron Milton Troen in
Google Scholar
PubMed
Search for other papers by Valdis Pīrāgs in
Google Scholar
PubMed
Search for other papers by Lisbeth Dahl in
Google Scholar
PubMed
Search for other papers by Alicja Hubalewska-Dydejczyk in
Google Scholar
PubMed
Search for other papers by Malgorzata Trofimiuk-Müldner in
Google Scholar
PubMed
Search for other papers by João Jacome de Castro in
Google Scholar
PubMed
Search for other papers by Mafalda Marcelino in
Google Scholar
PubMed
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Search for other papers by Simona Gaberšček in
Google Scholar
PubMed
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Search for other papers by Katja Zaltel in
Google Scholar
PubMed
Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Manuel Puig-Domingo in
Google Scholar
PubMed
Search for other papers by Lluis Vila in
Google Scholar
PubMed
Frölunda Specialist Hospital, Västra Frölunda, Sweden
Search for other papers by Sofia Manousou in
Google Scholar
PubMed
Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Wallenberg Centre of Molecular and Translational Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Helena Filipsson Nyström in
Google Scholar
PubMed
Search for other papers by Michael Bruce Zimmermann in
Google Scholar
PubMed
Search for other papers by Karen R Mullan in
Google Scholar
PubMed
Search for other papers by Jayne Valerie Woodside in
Google Scholar
PubMed
Search for other papers by Henry Völzke in
Google Scholar
PubMed
Search for other papers by Betina Heinsbæk Thuesen in
Google Scholar
PubMed
Objective
Registers of diagnoses and treatments exist in different forms in the European countries and are potential sources to answer important research questions. Prevalence and incidence of thyroid diseases are highly dependent on iodine intake and, thus, iodine deficiency disease prevention programs. We aimed to collect European register data on thyroid outcomes to compare the rates between countries/regions with different iodine status and prevention programs.
Design
Register-based cross-sectional study.
Methods
National register data on thyroid diagnoses and treatments were requested from 23 European countries/regions. The provided data were critically assessed for suitability for comparison between countries/regions. Sex- and age-standardized rates were calculated.
Results
Register data on ≥1 thyroid diagnoses or treatments were available from 22 countries/regions. After critical assessment, data on medication, surgery, and cancer were found suitable for comparison between 9, 10, and 13 countries/regions, respectively. Higher rates of antithyroid medication and thyroid surgery for benign disease and lower rates of thyroid hormone therapy were found for countries with iodine insufficiency before approx. 2001, and no relationship was observed with recent iodine intake or prevention programs.
Conclusions
The collation of register data on thyroid outcomes from European countries is impeded by a high degree of heterogeneity in the availability and quality of data between countries. Nevertheless, a relationship between historic iodine intake and rates of treatments for hyper- and hypothyroid disorders is indicated. This study illustrates both the challenges and the potential for the application of register data of thyroid outcomes across Europe.