Search Results

You are looking at 1 - 1 of 1 items for :

  • Author: Bibian van der Voorn x
  • Paediatric Endocrinology x
Clear All Modify Search
Martijn J J Finken Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Close
,
Aleid J G Wirix Department of Public and Occupational Health, EMGO Institute for Health and Care Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Aleid J G Wirix in
Google Scholar
PubMed
Close
,
Ines A von Rosenstiel-Jadoul Department of Pediatrics, Rijnstate Hospital, Arnhem, The Netherlands

Search for other papers by Ines A von Rosenstiel-Jadoul in
Google Scholar
PubMed
Close
,
Bibian van der Voorn Department of Pediatric Endocrinology and Obesity Center CGG, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands

Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Close
,
Mai J M Chinapaw Department of Public and Occupational Health, EMGO Institute for Health and Care Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Mai J M Chinapaw in
Google Scholar
PubMed
Close
,
Michaela F Hartmann Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Department of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany

Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Close
,
Joana E Kist-van Holthe Department of Public and Occupational Health, EMGO Institute for Health and Care Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Joana E Kist-van Holthe in
Google Scholar
PubMed
Close
,
Stefan A Wudy Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Department of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany

Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Close
, and
Joost Rotteveel Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Close

Objective

Childhood obesity is associated with alterations in hypothalamus–pituitary–adrenal axis activity. We tested the hypothesis that multiple alterations in the metabolism of glucocorticoids are required for the development of hypertension in children who become overweight.

Methods

Spot urine for targeted gas chromatography-mass spectrometry steroid metabolome analysis was collected from (1) overweight/hypertensive children (n  = 38), (2) overweight/non-hypertensive children (n  = 83), and (3) non-overweight/non-hypertensive children (n  = 56).

Results

The mean (± s.d.) age of participants was 10.4 ± 3.4 years, and 53% of them were male. Group 1 and group 2 had higher excretion rates of cortisol and corticosterone metabolites than group 3 (869 (interquartile range: 631–1352) vs 839 (609–1123) vs 608 (439–834) μg/mmol creatinine × m2 body surface area, P < 0.01, for the sum of cortisol metabolites), and group 1 had a higher excretion rate of naive cortisol than group 3. Furthermore, groups differed in cortisol metabolism, in particular in the activities of 11β-hydroxysteroid dehydrogenases, as assessed from the ratio of cortisol:cortisone metabolites (group 2 < group 3), 5α-reductase (group 1 > group 2 or 3), and CYP3A4 activity (group 1 < group 2 or 3).

Discussion

The sequence of events leading to obesity-associated hypertension in children may involve an increase in the production of glucocorticoids, downregulation of 11β-hydroxysteroid dehydrogenase type 1 activity, and upregulation of 5α-reductase activity, along with a decrease in CYP3A4 activity and an increase in bioavailable cortisol.

Open access