Browse

You are looking at 1 - 10 of 632 items for

Open access

Roberto Cosimo Melcangi, Livio Casarini, Marco Marino, Daniele Santi, Samantha Sperduti, Silvia Giatti, Silvia Diviccaro, Maria Grimoldi, Donatella Caruso, Guido Cavaletti and Manuela Simoni

Context

Post-finasteride syndrome (PFS) occurs in patients with androgenic alopecia after suspension of the finasteride treatment, leading to a large variety of persistent side effects. Despite the severity of the clinical picture, the mechanism underlying the PFS symptoms onset and persistence is still unclear.

Objective

To study whether epigenetic modifications occur in PFS patients.

Methods

Retrospective analysis of a multicentric, prospective, longitudinal, case–control clinical trial, enrolling 16 PFS patients, compared to 20 age-matched healthy men. Main outcomes were methylation pattern of SRD5A1 and SRD5A2 promoters and concentration of 11 neuroactive steroids, measured by liquid chromatography-tandem mass spectrometry, in blood and cerebrospinal fluid (CSF) samples.

Results

SRD5A1 and SRD5A2 methylation analysis was performed in all blood samples (n = 16 PFS patients and n = 20 controls), in 16 CSF samples from PFS patients and in 13 CSF samples from controls. The SRD5A2 promoter was more frequently methylated in CSF of PFS patients compared to controls (56.3 vs 7.7%). No promoter methylation was detected in blood samples in both groups. No methylation occurred in the SRD5A1 promoter of both groups. Unmethylated controls compared to unmethylated SRD5A2 patients showed higher pregnenolone, dihydrotestosterone and dihydroprogesterone, together with lower testosterone CSF levels. Andrological and neurological assessments did not differ between methylated and unmethylated subjects.

Conclusions

For the first time, we demonstrate a tissue-specific methylation pattern of SRD5A2 promoter in PFS patients. Although we cannot conclude whether this pattern is prenatally established or induced by finasteride treatment, it could represent an important mechanism of neuroactive steroid levels and behavioural disturbances previously described in PFS.

Open access

Arno Téblick, Lies Langouche and Greet Van den Berghe

Critical illness is hallmarked by major changes in all hypothalamic–pituitary–peripheral hormonal axes. Extensive animal and human studies have identified a biphasic pattern in circulating pituitary and peripheral hormone levels throughout critical illness by analogy with the fasting state. In the acute phase of critical illness, following a deleterious event, rapid neuroendocrine changes try to direct the human body toward a catabolic state to ensure provision of elementary energy sources, whereas costly anabolic processes are postponed. Thanks to new technologies and improvements in critical care, the majority of patients survive the acute insult and recover within a week. However, an important part of patients admitted to the ICU fail to recover sufficiently, and a prolonged phase of critical illness sets in. This prolonged phase of critical illness is characterized by a uniform suppression of the hypothalamic–pituitary–peripheral hormonal axes. Whereas the alterations in hormonal levels during the first hours and days after the onset of critical illness are evolutionary selected and are likely beneficial for survival, endocrine changes in prolonged critically ill patients could be harmful and may hamper recovery. Most studies investigating the substitution of peripheral hormones or strategies to overcome resistance to anabolic stimuli failed to show benefit for morbidity and mortality. Research on treatment with selected and combined hypothalamic hormones has shown promising results. Well-controlled RCTs to corroborate these findings are needed.

Open access

Lena-Maria Levin, Henry Völzke, Markus M Lerch, Jens-Peter Kühn, Matthias Nauck, Nele Friedrich and Stephanie Zylla

Objective

Chemerin and adiponectin are adipokines assumed to be involved in the development of metabolic syndrome-related phenotypes like hepatic steatosis. We aimed to evaluate the associations of circulating chemerin and adiponectin concentrations with liver enzymes, liver fat content, and hepatic steatosis in the general population.

Methods

Data of 3951 subjects from the population-based Study of Health in Pomerania (SHIP-TREND) were used. Hepatic steatosis was assumed when either a hyperechogenic liver (assessed via ultrasound) or a magnetic resonance imaging (MRI)-quantified liver fat content >5% was present. Adjusted sex-specific quantile and logistic regression models were applied to analyze the associations of chemerin and adiponectin with liver enzymes, liver fat content and hepatic steatosis.

Results

The observed associations of chemerin and adiponectin with liver enzymes were very divergent depending on sex, fasting status and the specific enzyme. More consistent results were seen in the analyses of these adipokines in relation to MRI-quantified liver fat content. Here, we observed inverse associations to adiponectin in both sexes as well as a positive (men) or U-shaped (women) association to chemerin. Similarly, the MRI-based definition of hepatic steatosis revealed strongly consistent results: in both sexes, high chemerin concentrations were associated with higher odds of hepatic steatosis, whereas high adiponectin concentrations were associated with lower odds.

Conclusion

Our results suggest a role of these adipokines in the pathogenesis of hepatic steatosis independent of metabolic or inflammatory disorders. However, experimental studies are needed to further clarify the underlying mechanisms and the inter-play between adipokine concentrations and hepatic steatosis.

Open access

Dong Cen, Hui Liu, Zhe Wan, Zhongjie Lin, Yanting Wang, Junjie Xu and Yuelong Liang

Purpose: Gallbladder neuroendocrine neoplasm (GB-NEN) is a relatively rare neoplasm, accounting for 0.5% of all neuroendocrine neoplasm cases and 2.1% of gallbladder cancers. Because of the limited understanding of GB-NEN, the aim of this study was to explore the clinicopathology and survival of GB-NEN patients selected from the Surveillance, Epidemiology, and End Results (SEER) database.

Methods: A total of 248 GB-NEN patients from the SEER database diagnosed between 2004 and 2015 were included. Kaplan–Meier curves were used to examine survival outcomes. Multivariate Cox proportional hazard models were used to estimate hazard ratios with 95% confidence intervals to analyze the impact of factors on overall survival and cancer-specific survival.

Results: The majority of the GB-NEN patients were women (67.3%), white (77%), and married (61.7%). Most tumors were <2 cm in size (31.0%), G3 stage (25.8%), and distant SEER stage (41.1%). Lots of cases showed an absence of lymph node metastasis and tumor metastasis. Patients who received gallbladder surgery had significantly better survival outcomes (p<0.001), but patients who received both gallbladder and lymph node surgery did not have better survival outcome compared with patients receiving only gallbladder surgery. Multivariate Cox proportional hazard models indicated age, marital status, tumor size, and SEER stage were significant independent predictors for overall survival and cancer-specific survival (p<0.05).

Conclusion: Age, marital status, tumor size, and SEER stage were predictors for the survival of GB-NEN patients. Gallbladder surgery was associated with better survival, but the combination of gallbladder surgery and lymphadenectomy had no effect on survival outcomes.

Open access

Maryam Iravani, Marie Lagerquist, Elham Karimian, Andrei S Chagin, Claes Ohlsson and Lars Savendahl

Estrogens may affect bone growth locally or systemically via the known estrogen receptors ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER-1). Mouse and human growth plate chondrocytes have been demonstrated to express GPER-1 and ablation of this receptor increased bone length in mice. Therefore, GPER-1 is an attractive target for therapeutic modulation of bone growth, which has never been explored. To investigate the effects of activated GPER-1 on the growth plate, we locally exposed mouse metatarsal bones to different concentrations of the selective GPER-1 agonist G1 for 14 days ex vivo. The results showed that none of the concentrations of G1 had any direct effect on metatarsal bone growth when compared to control. To evaluate if GPER-1 stimulation may systemically modulate bone growth, ovariectomized C57BL/6 mice were treated with G1 or, β-estradiol (E2). Similarly, G1 did not influence tibia and femur growth in treated mice. As expected, E2 treatment suppressed bone growth in vivo. We conclude that ligand stimulation of GPER-1 does not influence bone growth in mice.

Open access

Simonetta Piana, Eleonora Zanetti, Alessandra Bisagni, Alessia Ciarrocchi, Davide Giordano, Federica Torricelli, Teresa Rossi and Moira Ragazzi

The NOTCH signaling is an evolutionarily conserved signaling pathway that regulates cell–cell interactions. NOTCH family members play a fundamental role in a variety of processes during development in particular in cell fate decisions. As other crucial factors during embryogenesis, NOTCH signaling is aberrantly reactivated in cancer where it has been linked to context-dependent effects. In thyroid cancer, NOTCH1 expression has been associated to aggressive features even if its in vivo expression within the entire spectrum of thyroid tumors has not definitively established. A series of 106 thyroid specimens including non-neoplastic lesions, benign and malignant tumors of common and rare histotypes, were investigated by immunohistochemistry to assess NOTCH1 expression. Extent of positivity and protein localization were investigated and correlated with clinical and morphological parameters. NOTCH1 positivity was predominantly associated with papillary carcinomas and only occasionally found in follicular carcinomas. Poorly differentiated and undifferentiated thyroid carcinomas showed only a partial positivity. NOTCH1 expression pattern also seemed differently distributed according to histotype. Our data confirm a role of NOTCH1 in thyroid cancer and highlight for the first time the specific involvement of this pathway in papillary carcinomas. Our data also indicate that other thyroid malignancies do not rely on NOTCH1 signaling for development and progression.

Open access

María L Bacigalupo, Verónica G Piazza, Nadia S Cicconi, Pablo Carabias, Andrzej Bartke, Yimin Fang, Ana I Sotelo, Gabriel A Rabinovich, María F Troncoso and Johanna G Miquet

Transgenic mice overexpressing growth hormone (GH) spontaneously develop liver tumors, including hepatocellular carcinoma (HCC), within a year. The preneoplastic liver pathology in these mice recapitulates that observed in humans at high risk of developing hepatic cancer. Although increased expression of galectin 1 (GAL1) in liver tissue is associated with HCC aggressiveness, a link between this glycan-binding protein and hormone-related tumor development has not yet been explored. In this study, we investigated GAL1 expression during liver tumor progression in mice continuously exposed to high levels of GH. GAL1 expression was determined by Western blotting, RT-qPCR and immunohistochemistry in the liver of transgenic mice overexpressing GH. Animals of representative ages at different stages of liver pathology were studied. GAL1 expression was upregulated in the liver of GH-transgenic mice. This effect was observed at early ages, when animals displayed no signs of liver disease or minimal histopathological alterations and was also detected in young adults with preneoplastic liver pathology. Remarkably, GAL1 upregulation was sustained during aging and its expression was particularly enhanced in liver tumors. GH also induced hepatic GAL1 expression in mice that were treated with this hormone for a short period. Moreover, GH triggered a rapid increment in GAL1 protein expression in human HCC cells, denoting a direct effect of the hormone on hepatocytes. Therefore, our results indicate that GH upregulates GAL1 expression in mouse liver, which may have critical implications in tumorigenesis. These findings suggest that this lectin could be implicated in hormone-driven liver carcinogenesis.

Open access

Jordyn Silverstein, Wesley Kidder, Susan Fisher, Thomas A Hope, Samantha Maisel, Dianna Ng, Jessica Van Ziffle, Chloe E Atreya and Katherine Van Loon

Background

Colorectal carcinoma (CRC) during the peri-partum period is challenging to diagnose due to the overlapping symptoms of CRC and pregnancy. This is the first case series to investigate clinicopathologic, hormonal and molecular features of CRC diagnosed during the peri-partum period. We hypothesized that advanced presentations of CRC could possibly be mitigated by pregnancy-related hormonal factors.

Methods

We conducted a retrospective review of five women diagnosed with CRC during the peri-partum period and studied the clinical and molecular features of their cancer.

Results

All patients presented with stage IV CRC at diagnosis; three had primary tumors in the rectum and two had primary tumors in the sigmoid colon. The liver was the most common metastatic site (three of five women). Immunohistochemistry stains were negative for estrogen receptors alpha (ERα) and beta (ERβ), and one tumor demonstrated low-level positivity for PR (1%). Formalin-fixed and paraffin-embedded (FFPE) biopsies from each case were tested with next-generation sequencing and found that all tumors were mismatch repair (MMR) proficient, and three harbored a KRAS mutation. Germline testing showed no predisposition to CRC; however, several somatic variants of undetermined significance (VUS) were identified.

Discussion

CRC in the peri-partum period poses significant risk factors for presentations with advanced disease due to diagnostic challenges. While our study provides no evidence that pathogenesis of CRC during pregnancy is driven by elevated estrogen and/or progesterone levels during pregnancy, additional putative etiologic factors, including placental growth factors, the immunosuppressive state of pregnancy and other physiologic processes during pregnancy, warrant future study.

Open access

Agnieszka Adamska, Aleksandra Maria Polak, Anna Krentowska, Agnieszka Łebkowska, Justyna Hryniewicka, Monika Leśniewska and Irina Kowalska

Objective

PCOS women are characterized by insulin resistance and have higher tendency to the development of hepatic steatosis. Fetuin-B has been introduced as a hepatokine/adipokine, which is increased in hepatic steatosis and may be connected with glucose metabolism disturbances. The aim of the study was to evaluate the relationships between serum fetuin-B concentration and indices of insulin resistance, insulin secretion and markers of liver steatosis in PCOS women in comparison to the control group.

Patients and methods

The study group included 108 women – 57 women with PCOS and 51 women matched for age and BMI as a control group. Serum concentration of fetuin-B was estimated. Homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment β cell function (HOMA-β) were calculated. Fatty liver index (FLI), lipid accumulation product (LAP) and visceral adiposity index (VAI) were used as markers of liver steatosis.

Results

We found higher serum concentration of fetuin-B and FLI in PCOS women in comparison to the control group (all P < 0.05). We observed a positive relationship between serum fetuin-B concentration and HOMA-β (r = 0.43, P = 0.01), HOMA-IR (r = 0.31, P = 0.01), FLI (r = 0.29, P = 0.02), VAI (r = 0.29, P = 0.02) and LAP (r = 0.32, P = 0.01) in PCOS women. We also noticed a relationship between HOMA-IR and FLI (r = 0.42, P = 0.01), VAI (r = 0.38, P = 0.004) and LAP (r = 0.41, P = 0.001) in this group. Multiple regression analysis revealed that HOMA-β (β = 0.39, P = 0.002) and LAP (β = 0.27, P = 0.02) were independently connected with serum fetuin-B levels in women with PCOS.

Conclusions

Serum fetuin-B levels are higher in women with PCOS and are independently connected with HOMA-β and hepatic steatosis.

Open access

Clara O. Odilia Sailer, Sophia Wiedemann, Konrad Strauss, Ingeborg Schnyder, Wiebke Kristin Fenske and Mirjam Christ-Crain

Hyperosmolality, osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters such as interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium ≥150mmol/l) by hypertonic-saline infusion. Copeptin (a marker indicating vasopressin activity), serum sodium and osmolality, plasma IL-8 and TNF-α were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/l (136, 147) to 151 mmol/l (145, 154) (p-value <0.01), serum osmolality increased from 295 mmol/l (281, 306) to 315 mmol/l (304, 325) (p-value <0.01). Median (range) copeptin increased from 4.3 pg/l (1.1, 21.4) to 28.8 pg/l (19.9, 43.4) (p-value <0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/ml (0.37, 1.6) to 0.7 pg/ml (0.4, 1.9) (p-value 0.09) and TNF-α levels decreased from 0.53 pg/ml (0.11, 1.1) to 0.45 pg/ml (0.12, 0.97) (p-value 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. Osmotic stress does not to stimulate circulating markers of systemic inflammation.