Search Results

You are looking at 1 - 10 of 545 items for

  • Abstract: Aging x
  • Abstract: Inflammation x
  • Abstract: Cognition x
Clear All Modify Search
Sophie van Rijn Clinical Neurodevelopmental Sciences, Leiden University, Wassenaarseweg, Leiden, The Netherlands
TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Sandifortdreef, Leiden, The Netherlands
Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg, Leiden, The Netherlands

Search for other papers by Sophie van Rijn in
Google Scholar
PubMed
Close
,
Kimberly Kuiper Clinical Neurodevelopmental Sciences, Leiden University, Wassenaarseweg, Leiden, The Netherlands
TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Sandifortdreef, Leiden, The Netherlands
Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg, Leiden, The Netherlands

Search for other papers by Kimberly Kuiper in
Google Scholar
PubMed
Close
,
Nienke Bouw Clinical Neurodevelopmental Sciences, Leiden University, Wassenaarseweg, Leiden, The Netherlands
TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Sandifortdreef, Leiden, The Netherlands
Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, Sophia Children’s Hospital, Dr. Molewaterplein, Rotterdam, The Netherlands

Search for other papers by Nienke Bouw in
Google Scholar
PubMed
Close
,
Evelien Urbanus Clinical Neurodevelopmental Sciences, Leiden University, Wassenaarseweg, Leiden, The Netherlands
TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Sandifortdreef, Leiden, The Netherlands
Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat, Amsterdam, The Netherlands

Search for other papers by Evelien Urbanus in
Google Scholar
PubMed
Close
, and
Hanna Swaab Clinical Neurodevelopmental Sciences, Leiden University, Wassenaarseweg, Leiden, The Netherlands
TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Sandifortdreef, Leiden, The Netherlands
Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg, Leiden, The Netherlands

Search for other papers by Hanna Swaab in
Google Scholar
PubMed
Close

Investigating sex chromosome trisomies (SCTs) may help in understanding neurodevelopmental pathways underlying the risk for neurobehavioral problems and psychopathology. Knowledge about the neurobehavioral phenotype is needed to improve clinical care and early intervention for children with SCT. This is especially relevant considering the increasing number of early diagnosed children with the recent introduction of noninvasive prenatal screening. The TRIXY Early Childhood Study is a longitudinal study designed to identify early neurodevelopmental risks in children with SCT, aged 1–7 years. This review summarizes the results from the TRIXY Early Childhood Study, focusing on early behavioral symptoms in areas of autism spectrum disorder, attention-deficit hyperactivity disorder, and communication disorders, and underlying neurocognitive mechanisms in domains of language, emotion regulation, executive functioning, and social cognition. Behavioral symptoms were assessed through structured behavior observation and parental questionnaires. Neurocognition was measured using performance tests, eyetracking, and psychophysiological measures of arousal. In total, 209 children aged 1–7 years were included: 107 children with SCT (33 XXX, 50 XXY, and 24 XYY) and 102 age-matched population controls. Study outcomes showed early behavioral symptoms in young children with SCT, and neurocognitive vulnerabilities, already from an early age onward. Neurobehavioral and neurocognitive difficulties tended to become more pronounced with increasing age and were rather robust, independent of specific karyotype, pre/postnatal diagnosis, or ascertainment strategy. A more longitudinal perspective on neurodevelopmental ‘at-risk’ pathways is warranted, also including studies assessing the effectiveness of targeted early interventions. Neurocognitive markers that signal differences in neurodevelopment may prove to be helpful in this. Focusing on early development of language, social cognition, emotion regulation, and executive functioning may help in uncovering early essential mechanisms of (later) neurobehavioral outcome, allowing for more targeted support and early intervention.

Open access
Reshma Aziz Merchant Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Reshma Aziz Merchant in
Google Scholar
PubMed
Close
,
Michael Wong Wai Kit Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Michael Wong Wai Kit in
Google Scholar
PubMed
Close
,
Jia Yi Lim Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Search for other papers by Jia Yi Lim in
Google Scholar
PubMed
Close
, and
John E Morley Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, Missouri, USA

Search for other papers by John E Morley in
Google Scholar
PubMed
Close

Objective

To investigate the association of normal BMI with central obesity (CO), high BMI with CO, high BMI without CO, and normal BMI without CO, with function and cognition in older adults.

Methods

Cross-sectional study involving 754 participants ≥ 65 years. Data collected include demographics, cognition, and physical measurements.

Results

Females had a higher prevalence of high BMI with CO and a lower prevalence of high BMI without CO than males (61.0% vs 44.6% and 4.6% vs 15.0%, respectively). Within gender, CO groups, regardless of BMI, had lower mini-mental state examination (MMSE), handgrip strength (HGS), and longer timed-up-and-go (TUG) scores. Overall, the high BMI without CO group had the highest MMSE scores, HGS, and shortest TUG. Amongst males, HGS was significantly lower in the normal BMI with CO group (B −3.28, 95% CI −6.32 to −0.23, P = 0.04). CO, regardless of normal/high BMI, had significantly longer TUG time (B 2.65, 95% CI 0.45 to 4.84, P = 0.02; B 1.07, 95% CI 0.25 to 1.88, P = 0.01, respectively) than normal BMI without CO group. CO was associated with lower MMSE scores in both genders but significant only in males with normal BMI and CO (B −1.60, 95% CI −3.15 to −0.06, P = 0.04).

Conclusion

CO may be a better predictor of obesity and adverse outcomes in older adults. High BMI without CO was associated with better outcomes especially in males but require further validation. Prospective longitudinal studies are needed to ascertain the impact of BMI and/or CO on function, cognition, mortality, and gender differences.

Open access
Frederique Van de Velde Department of Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Frederique Van de Velde in
Google Scholar
PubMed
Close
,
Marlies Bekaert Department of Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Marlies Bekaert in
Google Scholar
PubMed
Close
,
Anja Geerts Department of Hepatology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Anja Geerts in
Google Scholar
PubMed
Close
,
Anne Hoorens Department of Pathology, Ghent University Hospital

Search for other papers by Anne Hoorens in
Google Scholar
PubMed
Close
,
Arsène-Hélène Batens Department of Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Arsène-Hélène Batens in
Google Scholar
PubMed
Close
,
Samyah Shadid Department of Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Samyah Shadid in
Google Scholar
PubMed
Close
,
Margriet Ouwens Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany
German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany

Search for other papers by Margriet Ouwens in
Google Scholar
PubMed
Close
,
Yves Van Nieuwenhove Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium

Search for other papers by Yves Van Nieuwenhove in
Google Scholar
PubMed
Close
, and
Bruno Lapauw Department of Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Bruno Lapauw in
Google Scholar
PubMed
Close

Purpose

Obese subjects with nonalcoholic fatty liver disease (NAFLD) are more prone to develop additional metabolic disturbances such as systemic insulin resistance (IR) and type 2 diabetes. NAFLD is defined by hepatic steatosis, lobular inflammation, ballooning and stage of fibrosis, but it is unclear if and which components could contribute to IR.

Objective

To assess which histological components of NAFLD associate with IR in subjects with obesity, and if so, to what extent.

Methods

This cross-sectional study included 78 obese subjects (mean age 46 ± 11 years; BMI 42.2 ± 4.7 kg/m2). Glucose levels were analysed by hexokinase method and insulin levels with electrochemiluminescence. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) was calculated. Liver biopsies were evaluated for histological components of NAFLD.

Results

A positive association between overall NAFLD Activity Score and HOMA-IR was found (r s = 0.259, P = 0.022). As per individual components, lobular inflammation and fibrosis stage were positively associated with HOMA-IR, glucose and insulin levels (P < 0.05), and HOMA-IR was higher in patients with more inflammatory foci or higher stage of fibrosis. These findings were independent of age, BMI, triglyceride levels, diabetes status and sex (all P < 0.043). In a combined model, lobular inflammation, but not fibrosis, remained associated with HOMA-IR.

Conclusion

In this group of obese subjects, a major contributing histological component of NAFLD to the relation between NAFLD severity and IR seems to be the grade of hepatic lobular inflammation. Although no causal relationship was assessed, preventing or mitigating this inflammatory response in obesity might be of importance in controlling obesity-related metabolic disturbances.

Open access
Charlotte Höybye Patient Area Endocrinology and Nephrology, Infection and Inflammation Theme, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Laia Faseh Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden

Search for other papers by Laia Faseh in
Google Scholar
PubMed
Close
,
Christos Himonakos Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
Department of Medicine, Karlstad Hospital, Karlstad, Sweden

Search for other papers by Christos Himonakos in
Google Scholar
PubMed
Close
,
Tomasz Pielak NUTOPI Sp. z o. o., Poznan, Poland

Search for other papers by Tomasz Pielak in
Google Scholar
PubMed
Close
, and
Jesper Eugen-Olsen Clinical Research Centre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

Search for other papers by Jesper Eugen-Olsen in
Google Scholar
PubMed
Close

Growth hormone deficiency (GHD) syndrome is associated with adverse levels of several risk factors for cardiovascular diseases (CVD), including metabolic inflammation. However, the impact of GHD and GH treatment on low-grade inflammation is unknown. The aim of the study was to establish the level of the low-grade inflammation biomarker soluble urokinase plasminogen activator receptor (suPAR) in adults with GHD and the response to long-term GH treatment. Measurements of suPAR and CRP were performed in bio-bank serum samples from 72 adults, 34 males and 38 females, with GHD before and during at least 5 years of GH treatment. Mean age was 52.5 ± 15.5 years, BMI 27.3 ± 5 kg/m2. Clinical evaluations and blood sampling were performed at routine visits. Data on demography, anthropometry, lab results and clinical events were retrieved from post-marketing surveillance study databases and medical records. suPAR and high-sensitive (hs) CRP were analysed using ELISA and immunochemistry, respectively. At baseline blood pressure, lipid profile and fasting glucose were within the normal reference range. Baseline geometric mean and 95% CI of suPAR was 2.9 (2.7–3.3) ng/mL and of CRP 2.3 (0.6–4.0) mg/L. Mean follow-up was 8 ± 2 years. The suPAR levels remained stable during follow-up, although individual increases were seen on occurrence or presence of co-morbidities. In contrast, levels of CRP decreased. In conclusion, the decrease in CRP and indirectly the absence of an expected increase in suPAR over time indicates a favourable effect of GH on low-grade inflammation.

Open access
M A Webb NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK

Search for other papers by M A Webb in
Google Scholar
PubMed
Close
,
H Mani Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
Diabetes and Endocrinology Department, Kettering General Hospital NHS Foundation Trust, Kettering, UK

Search for other papers by H Mani in
Google Scholar
PubMed
Close
,
S J Robertson The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK

Search for other papers by S J Robertson in
Google Scholar
PubMed
Close
,
H L Waller Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by H L Waller in
Google Scholar
PubMed
Close
,
D R Webb NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by D R Webb in
Google Scholar
PubMed
Close
,
C L Edwardson NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by C L Edwardson in
Google Scholar
PubMed
Close
,
D H Bodicoat NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by D H Bodicoat in
Google Scholar
PubMed
Close
,
T Yates NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by T Yates in
Google Scholar
PubMed
Close
,
K Khunti NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by K Khunti in
Google Scholar
PubMed
Close
, and
M J Davies NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by M J Davies in
Google Scholar
PubMed
Close

Aims

Physical activity has been proposed to be an effective non-pharmacological method of reducing systemic inflammation and therefore may prove particularly efficacious for women with polycystic ovary syndrome (PCOS) who have been shown to have high levels of inflammation and an increased risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD). Therefore, the aim of the present study was to assess whether modest changes in daily step count could significantly reduce levels of inflammatory markers in women with PCOS.

Subjects and Methods

Sixty-five women with PCOS were assessed at baseline and again at 6 months. All had been provided with an accelerometer and encouraged to increase activity levels. Multivariate linear regression analyses (adjusted for age, ethnicity, baseline step count, change in BMI and change in accelerometer wear-time) were used to assess changes in daily step count against clinical and research biomarkers of inflammation, CVD and T2DM.

Results

Mean step count/day at baseline was 6337 (±270). An increase in step count (by 1000 steps) was associated with a 13% reduction in IL6 (β: −0.81 ng/L; 95% CI, −1.37, −0.25, P = 0.005) and a 13% reduction in CRP (β: −0.68 mg/L; 95% CI, −1.30, −0.06, P = 0.033). Additionally, there was a modest decrease in BMI (β: 0.20 kg/m2; 95% CI, −0.38, −0.01, P = 0.038). Clinical markers of T2DM and CVD were not affected by increased step count.

Conclusions

Modest increases in step count/day can reduce levels of inflammatory markers in women with PCOS, which may reduce the future risk of T2DM and CVD.

Open access
Patricia Iozzo Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy

Search for other papers by Patricia Iozzo in
Google Scholar
PubMed
Close
and
Maria Angela Guzzardi Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy

Search for other papers by Maria Angela Guzzardi in
Google Scholar
PubMed
Close

The prevalence of obesity has reached epidemic proportions and keeps growing. Obesity seems implicated in the pathogenesis of cognitive dysfunction, Alzheimer’s disease and dementia, and vice versa. Growing scientific efforts are being devoted to the identification of central mechanisms underlying the frequent association between obesity and cognitive dysfunction. Glucose brain handling undergoes dynamic changes during the life-course, suggesting that its alterations might precede and contribute to degenerative changes or signaling abnormalities. Imaging of the glucose analog 18F-labeled fluorodeoxyglucose (18FDG) by positron emission tomography (PET) is the gold-standard for the assessment of cerebral glucose metabolism in vivo. This review summarizes the current literature addressing brain glucose uptake measured by PET imaging, and the effect of insulin on brain metabolism, trying to embrace a life-course vision in the identification of patterns that may explain (and contribute to) the frequent association between obesity and cognitive dysfunction. The current evidence supports that brain hypermetabolism and brain insulin resistance occur in selected high-risk conditions as a transient phenomenon, eventually evolving toward normal or low values during life or disease progression. Associative studies suggest that brain hypermetabolism predicts low BDNF levels, hepatic and whole body insulin resistance, food desire and an unfavorable balance between anticipated reward from food and cognitive inhibitory control. Emerging mechanistic links involve the microbiota and the metabolome, which correlate with brain metabolism and cognition, deserving attention as potential future prevention targets.

Open access
Richard H Tuligenga INSERM U1018, Université Paris Sud, Centre for Research in Epidemiology and Population Health, Hôpital Paul Brousse, Bât 15/16, 16 Avenue Paul Vaillant Couturier, 94807 Paris, Villejuif Cedex, France
INSERM U1018, Université Paris Sud, Centre for Research in Epidemiology and Population Health, Hôpital Paul Brousse, Bât 15/16, 16 Avenue Paul Vaillant Couturier, 94807 Paris, Villejuif Cedex, France

Search for other papers by Richard H Tuligenga in
Google Scholar
PubMed
Close

The aim of this meta-analysis was to compare the effect of intensive vs standard glycaemic control on cognitive decline in type 2 diabetic patients. A systematic search of PubMed and ALOIS was conducted from inception up to October 30, 2014. Randomised controlled trials (RCTs) of type 2 diabetic patients comparing the rate of change in cognitive function among participants assigned to intensive vs standard glycaemic control were included. An inverse-variance-weighted random effects model was used to calculate standardised mean differences (SMDs) and 95% CIs. A total of 24 297 patients from five RCTs were included in the meta-analysis. Follow-up ranged from 3.3 to 6.2 years. The result from the pooled analysis showed that intensive glycaemic control was not associated with a slower rate of cognitive decline in patients with type 2 diabetes, compared with standard glycaemic control (SMD=0.02; 95% CI=−0.03 to 0.08) although there was some heterogeneity across individual studies (I 2=68%, P for heterogeneity=0.01). There are few diabetes control trials including cognitive endpoints and a small number of trials comparing intensive and standard treatment strategies. Currently, intensive glycaemic control should not be recommended for prevention of cognitive decline in patients with type 2 diabetes because there is no evidence of its effectiveness. Moreover, the use of intensive diabetes treatment results in an increase of risk of hypoglycaemia, which is linked to a greater risk of poor cognition.

Open access
Lars Peter Sørensen
Search for other papers by Lars Peter Sørensen in
Google Scholar
PubMed
Close
,
Tina Parkner Department of Endocrinology and Internal Medicine, Department of Clinical Biochemistry, Department of Biostatistics, Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark

Search for other papers by Tina Parkner in
Google Scholar
PubMed
Close
,
Esben Søndergaard
Search for other papers by Esben Søndergaard in
Google Scholar
PubMed
Close
,
Bo Martin Bibby Department of Endocrinology and Internal Medicine, Department of Clinical Biochemistry, Department of Biostatistics, Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark

Search for other papers by Bo Martin Bibby in
Google Scholar
PubMed
Close
,
Holger Jon Møller Department of Endocrinology and Internal Medicine, Department of Clinical Biochemistry, Department of Biostatistics, Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark

Search for other papers by Holger Jon Møller in
Google Scholar
PubMed
Close
, and
Søren Nielsen
Search for other papers by Søren Nielsen in
Google Scholar
PubMed
Close

Monocyte/macrophage-specific soluble CD163 (sCD163) concentration is associated with insulin resistance and increases with deteriorating glycemic control independently of BMI. This led to the proposal of the hypothesis that obesity-associated white adipose tissue inflammation varies between individuals. The objective was to examine the effect of male overweight/obesity and type 2 diabetes mellitus (T2DM) on associations between adiposity parameters and sCD163. A total of 23 overweight/obese non-diabetic men, 16 overweight/obese men with T2DM, and a control group of 20 normal-weight healthy men were included. Body composition and regional body fat distribution were determined by whole-body dual X-ray absorptiometry scan and abdominal computed tomography (CT) scan. Serum sCD163 concentrations were determined by ELISA. Associations between adiposity parameters and sCD163 were investigated using multiple linear regression analysis. In the normal-weight healthy men, there was no significant association between adiposity parameters and sCD163, whereas in the overweight/obese non-diabetic men, measures of general and regional adiposity were positively associated with sCD163. In the overweight/obese men with T2DM, only visceral adipose tissue (VAT) and the ratio of VAT to abdominal subcutaneous adipose tissue (SAT), a measure of relative body fat distribution between VAT and SAT depots, were positively associated with sCD163. In a multivariate analysis, including VAT, upper-body SAT, and lower-body fat, adjusted for BMI and age, VAT remained a significant predictor of sCD163 in the overweight/obese T2DM men, but not in the overweight/obese non-diabetic men. Our results indicate that VAT inflammation is exaggerated in men with T2DM, and that propensity to store excess body fat viscerally is particularly detrimental in men with T2DM.

Open access
Aditya Dutta Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi, India

Search for other papers by Aditya Dutta in
Google Scholar
PubMed
Close
,
Ganesh Jevalikar Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi, India

Search for other papers by Ganesh Jevalikar in
Google Scholar
PubMed
Close
,
Rutuja Sharma Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi, India

Search for other papers by Rutuja Sharma in
Google Scholar
PubMed
Close
,
Khalid J Farooqui Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi, India

Search for other papers by Khalid J Farooqui in
Google Scholar
PubMed
Close
,
Shama Mahendru Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi, India

Search for other papers by Shama Mahendru in
Google Scholar
PubMed
Close
,
Arun Dewan Institute of Internal Medicine, Max Healthcare, Saket, New Delhi, India

Search for other papers by Arun Dewan in
Google Scholar
PubMed
Close
,
Sandeep Bhudiraja Institute of Internal Medicine, Max Healthcare, Saket, New Delhi, India

Search for other papers by Sandeep Bhudiraja in
Google Scholar
PubMed
Close
, and
Ambrish Mithal Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi, India

Search for other papers by Ambrish Mithal in
Google Scholar
PubMed
Close

Aim

To study the prevalence of thyroid dysfunction and its association with disease severity in hospitalized patients of coronavirus disease-19 (COVID-19).

Methods

In this retrospective cohort study, thyroid function tests (TFT) of 236 hospitalized patients of COVID-19 along with demographic, comorbid, clinical, biochemical and disease severity records were analysed. Patients were divided into previous euthyroid or hypothyroid status to observe the effect of prior hypothyroidism on the severity of COVID-19.

Results

TFT abnormalities were common. Low free T3 (FT3), high thyroid-stimulating hormone (TSH) and low TSH were seen in 56 (23.7%), 15 (6.4%) and 9 (3.8%) patients, respectively. The median levels of TSH (2.06 vs 1.26 mIU/mL, P = 0.001) and FT3 (2.94 vs 2.47 pg/mL, P < 0.001) were significantly lower in severe disease. Previous hypothyroid status (n = 43) was associated with older age, higher frequency of comorbidities, higher FT4 and lower FT3. TFT did not correlate with markers of inflammation (except lactate dehydrogenase); however, FT3 and TSH negatively correlated with outcome severity score and duration of hospital stay. Cox regression analysis showed that low FT3 was associated with severe COVID-19 (P = 0.032, HR 0.302; CI 0.101–0.904), irrespective of prior hypothyroidism.

Conclusions

Functional thyroid abnormalities (low FT3 and low TSH) are frequently seen in hospitalized patients of COVID-19. Although these abnormalities did not correlate with markers of inflammation, this study shows that low FT3 at admission independently predicts the severity of COVID-19.

Open access
Cheryl M Isherwood Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by Cheryl M Isherwood in
Google Scholar
PubMed
Close
,
M Denise Robertson Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Close
,
Debra J Skene Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by Debra J Skene in
Google Scholar
PubMed
Close
, and
Jonathan D Johnston Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Search for other papers by Jonathan D Johnston in
Google Scholar
PubMed
Close

Obesity is a major cause of type 2 diabetes. Transition from obesity to type 2 diabetes manifests in the dysregulation of hormones controlling glucose homeostasis and inflammation. As metabolism is a dynamic process that changes across 24 h, we assessed diurnal rhythmicity in a panel of 10 diabetes-related hormones. Plasma hormones were analysed every 2 h over 24 h in a controlled laboratory study with hourly isocaloric drinks during wake. To separate effects of body mass from type 2 diabetes, we recruited three groups of middle-aged men: an overweight (OW) group with type 2 diabetes and two control groups (lean and OW). Average daily concentrations of glucose, triacylglycerol and all the hormones except visfatin were significantly higher in the OW group compared to the lean group (P < 0.001). In type 2 diabetes, glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide and glucagon-like peptide-1 increased further (P < 0.05), whereas triacylglycerol, ghrelin and plasminogen activator inhibitor-1 concentrations were significantly lower compared to the OW group (P < 0.001). Insulin, C-peptide, glucose-dependent insulinotropic peptide and leptin exhibited significant diurnal rhythms in all study groups (P < 0.05). Other hormones were only rhythmic in 1 or 2 groups. In every group, hormones associated with glucose regulation (insulin, C-peptide, glucose-dependent insulinotropic peptide, ghrelin and plasminogen activator inhibitor-1), triacylglycerol and glucose peaked in the afternoon, whereas glucagon and hormones associated with appetite and inflammation peaked at night. Thus being OW with or without type 2 diabetes significantly affected hormone concentrations but did not affect the timing of the hormonal rhythms.

Open access