Search Results

You are looking at 1 - 10 of 34 items for :

  • Abstract: Bone x
  • Abstract: Calcium x
  • Abstract: Hypoparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Vitamin D x
  • Bone and Mineral Metabolism x
Clear All Modify Search
Marcela Moraes Mendes Department of Nutrition, Faculty of Health Sciences, University of Brasília, Distrito Federal, Brazil
Department of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, University of Surrey, Guildford, UK

Search for other papers by Marcela Moraes Mendes in
Google Scholar
PubMed
Close
,
Patricia Borges Botelho Department of Nutrition, Faculty of Health Sciences, University of Brasília, Distrito Federal, Brazil

Search for other papers by Patricia Borges Botelho in
Google Scholar
PubMed
Close
, and
Helena Ribeiro Department of Environmental Health, Faculty of Public Health, University of São Paulo, São Paulo, Brazil

Search for other papers by Helena Ribeiro in
Google Scholar
PubMed
Close

Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.

Open access
Glenville Jones Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada

Search for other papers by Glenville Jones in
Google Scholar
PubMed
Close

Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.

Open access
Johanna Öberg Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway

Search for other papers by Johanna Öberg in
Google Scholar
PubMed
Close
,
Rolf Jorde Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway

Search for other papers by Rolf Jorde in
Google Scholar
PubMed
Close
,
Yngve Figenschau Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
Diagnostic Clinic, University Hospital of North Norway, Tromso, Norway

Search for other papers by Yngve Figenschau in
Google Scholar
PubMed
Close
,
Per Medbøe Thorsby Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway

Search for other papers by Per Medbøe Thorsby in
Google Scholar
PubMed
Close
,
Sandra Rinne Dahl Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway

Search for other papers by Sandra Rinne Dahl in
Google Scholar
PubMed
Close
,
Anne Winther Division of Neurosciences, Orthopedics and Rehabilitation Services, University Hospital of North Norway, Tromso, Norway

Search for other papers by Anne Winther in
Google Scholar
PubMed
Close
, and
Guri Grimnes Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromso, Norway

Search for other papers by Guri Grimnes in
Google Scholar
PubMed
Close

Objective

Combined hormonal contraceptive (CHC) use has been associated with higher total 25-hydroxyvitamin D (25(OH)D) levels. Here, we investigate the relation between CHC use and vitamin D metabolism to elucidate its clinical interpretation.

Methods

The cross-sectional Fit Futures 1 included 1038 adolescents. Here, a subgroup of 182 girls with available 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)2D), 24,25-dihydroxyvitamin D (24,25(OH)2D), vitamin D-binding protein (DBP) and measured free 25(OH)D levels, in addition to parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), was investigated. Vitamin D metabolites were compared between girls using (CHC+) and not using CHC (CHC−). Further, the predictability of CHC on 25(OH)D levels was assessed in a multiple regression model including lifestyle factors. The ratios 1,25(OH)2D/25(OH)D and 24,25(OH)2D/25(OH)D (vitamin D metabolite ratio (VMR)) in relation to 25(OH)D were presented in scatterplots.

Results

CHC+ (n  = 64; 35% of the girls) had higher 25(OH)D levels (mean ± s.d., 60.3 ± 22.2) nmol/L) than CHC- (n  = 118; 41.8 ± 19.3 nmol/L), P -values <0.01. The differences in 25(OH)D levels between CHC+ and CHC− were attenuated but remained significant after the adjustment of lifestyle factors. CHC+ also had higher levels of 1,25(OH)2D, 24,25(OH)2D, DBP and calcium than CHC−, whereas 1,25(OH)2D/25(OH)D, PTH, FGF23 and albumin were significantly lower. Free 25(OH)D and VMR did not statistically differ, and both ratios appeared similar in relation to 25(OH)D, irrespective of CHC status.

Conclusion

This confirms a clinical impact of CHC on vitamin D levels in adolescents. Our observations are likely due to an increased DBP-concentration, whereas the free 25(OH)D appears unaltered.

Open access
Gabriella Oliveira Lima Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Close
,
Alex Luiz Menezes da Silva Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Close
,
Julianne Elba Cunha Azevedo Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Close
,
Chirlene Pinheiro Nascimento Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Close
,
Luana Rodrigues Vieira Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Close
,
Akira Otake Hamoy Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Close
,
Luan Oliveira Ferreira Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Close
,
Verônica Regina Lobato Oliveira Bahia Multidisciplinary Laboratory of Animal Morphology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Close
,
Nilton Akio Muto Amazon Bioactive Compounds Valorization Center, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Close
,
Dielly Catrina Favacho Lopes Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Close
, and
Moisés Hamoy Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Close

Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.

Open access
Mohammed S Razzaque Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA

Search for other papers by Mohammed S Razzaque in
Google Scholar
PubMed
Close

Fibroblast growth factor‐23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α‐hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24‐hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.

Open access
Shu-Meng Hu Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Shu-Meng Hu in
Google Scholar
PubMed
Close
,
Yang-Juan Bai Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Yang-Juan Bai in
Google Scholar
PubMed
Close
,
Ya-Mei Li Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Ya-Mei Li in
Google Scholar
PubMed
Close
,
Ye Tao Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Ye Tao in
Google Scholar
PubMed
Close
,
Xian-Ding Wang Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Xian-Ding Wang in
Google Scholar
PubMed
Close
,
Tao Lin Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Tao Lin in
Google Scholar
PubMed
Close
,
Lan-Lan Wang Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Lan-Lan Wang in
Google Scholar
PubMed
Close
, and
Yun-Ying Shi Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Yun-Ying Shi in
Google Scholar
PubMed
Close

Introduction

Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation.

Materials and methods

Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23–KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients.

Results

Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12.

Conclusion

Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.

Open access
Jane Fletcher Nutrition Nurses, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK

Search for other papers by Jane Fletcher in
Google Scholar
PubMed
Close
,
Emma L Bishop Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

Search for other papers by Emma L Bishop in
Google Scholar
PubMed
Close
,
Stephanie R Harrison Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Leeds, UK

Search for other papers by Stephanie R Harrison in
Google Scholar
PubMed
Close
,
Amelia Swift School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK

Search for other papers by Amelia Swift in
Google Scholar
PubMed
Close
,
Sheldon C Cooper Gastroenterology Department, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK

Search for other papers by Sheldon C Cooper in
Google Scholar
PubMed
Close
,
Sarah K Dimeloe Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

Search for other papers by Sarah K Dimeloe in
Google Scholar
PubMed
Close
,
Karim Raza Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK

Search for other papers by Karim Raza in
Google Scholar
PubMed
Close
, and
Martin Hewison Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK

Search for other papers by Martin Hewison in
Google Scholar
PubMed
Close

Vitamin D has well-documented effects on calcium homeostasis and bone metabolism but recent studies suggest a much broader role for this secosteroid in human health. Key components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D (1,25D) within immune cells, and then interact with VDR and promote transcriptional and epigenomic responses in the same or neighbouring cells. These intracrine and paracrine effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic observations, association studies have reported the correlation between low serum 25D levels and the risk and severity of human immune disorders including autoimmune diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and rheumatoid arthritis. The proposed explanation for this is that decreased availability of 25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity and over-exuberant inflammatory adaptive immunity. The aim of the current review is to explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk of inflammatory autoimmune disease.

Open access
Barbara J Boucher The Blizard Institute, Queen Mary University of London, London, UK

Search for other papers by Barbara J Boucher in
Google Scholar
PubMed
Close

High vitamin D deficiency rates, with rickets and osteomalacia, have been common in South Asians (SAs) arriving in Britain since the 1950s with preventable infant deaths from hypocalcaemic status-epilepticus and cardiomyopathy. Vitamin D deficiency increases common SA disorders (type 2 diabetes and cardiovascular disease), recent trials and non-linear Mendelian randomisation studies having shown deficiency to be causal for both disorders. Ethnic minority, obesity, diabetes and social deprivation are recognised COVID-19 risk factors, but vitamin D deficiency is not, despite convincing mechanistic evidence of it. Adjusting analyses for obesity/ethnicity abolishes vitamin D deficiency in COVID-19 risk prediction, but both factors lower serum 25(OH)D specifically. Social deprivation inadequately explains increased ethnic minority COVID-19 risks. SA vitamin D deficiency remains uncorrected after 70 years, official bodies using ‘education’, ‘assimilation’ and ‘diet’ as ‘proxies’ for ethnic differences and increasing pressures to assimilate. Meanwhile, English rickets was abolished from ~1940 by free ‘welfare foods’ (meat, milk, eggs, cod liver oil), for all pregnant/nursing mothers and young children (<5 years old). Cod liver oil was withdrawn from antenatal clinics in 1994 (for excessive vitamin A teratogenicity), without alternative provision. The take-up of the 2006 ‘Healthy-Start’ scheme of food-vouchers for low-income families with young children (<3 years old) has been poor, being inaccessible and poorly publicised. COVID-19 pandemic advice for UK adults in ‘lockdown’ was ‘400 IU vitamin D/day’, inadequate for correcting the deficiency seen winter/summer at 17.5%/5.9% in White, 38.5%/30% in Black and 57.2%/50.8% in SA people in representative UK Biobank subjects when recruited ~14 years ago and remaining similar in 2018. Vitamin D inadequacy worsens many non-skeletal health risks. Not providing vitamin D for preventing SA rickets and osteomalacia continues to be unacceptable, as deficiency-related health risks increase ethnic health disparities, while abolishing vitamin D deficiency would be easier and more cost-effective than correcting any other factor worsening ethnic minority health in Britain.

Open access
Niek F Dirks Atalmedial Diagnostics Centre, Spaarne Gasthuis, Haarlem, The Netherlands
Department of Clinical Chemistry, Hematology and Immunology, Noordwest Ziekenhuis, Alkmaar, The Netherlands

Search for other papers by Niek F Dirks in
Google Scholar
PubMed
Close
,
Etienne Cavalier Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium

Search for other papers by Etienne Cavalier in
Google Scholar
PubMed
Close
, and
Annemieke C Heijboer Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan, Amsterdam, The Netherlands
Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam, The Netherlands
Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands

Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
Close

The measurement of vitamin D metabolites aids in assessing vitamin D status and in diagnosing disorders of calcium homeostasis. Most laboratories measure total 25-hydroxyvitamin D (25(OH)D), while others have taken the extra effort to measure 25(OH)D2 and 25(OH)D3 separately and additional metabolites such as 1,25-dihydroxyvitamin D and 24,25-dihydroxyvitamin D. The aim of this review is to provide an updated overview of the main markers of vitamin D metabolism, define the intended measurands, and discuss the advantages and disadvantages of the two most widely used assays, automated assays and liquid chromatography–tandem mass spectrometry (LC-MS/MS). Whether using the easy and fast automated assays or the more complex LC-MS/MS, one should know the pitfalls of the used technique in order to interpret the measurements. In conclusion, automated assays are unable to accurately measure 25(OH)D in all patient groups, including persons using D2. In these cases, an LC-MS/MS method, when appropriately developed and standardized, produces a more reliable measurement.

Open access
Nancy Martini Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Nancy Martini in
Google Scholar
PubMed
Close
,
Lucas Streckwall Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Close
, and
Antonio Desmond McCarthy Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
Close

In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.

Open access