Search Results
Search for other papers by Aditya Dutta in
Google Scholar
PubMed
Search for other papers by Ganesh Jevalikar in
Google Scholar
PubMed
Search for other papers by Rutuja Sharma in
Google Scholar
PubMed
Search for other papers by Khalid J Farooqui in
Google Scholar
PubMed
Search for other papers by Shama Mahendru in
Google Scholar
PubMed
Search for other papers by Arun Dewan in
Google Scholar
PubMed
Search for other papers by Sandeep Bhudiraja in
Google Scholar
PubMed
Search for other papers by Ambrish Mithal in
Google Scholar
PubMed
Aim
To study the prevalence of thyroid dysfunction and its association with disease severity in hospitalized patients of coronavirus disease-19 (COVID-19).
Methods
In this retrospective cohort study, thyroid function tests (TFT) of 236 hospitalized patients of COVID-19 along with demographic, comorbid, clinical, biochemical and disease severity records were analysed. Patients were divided into previous euthyroid or hypothyroid status to observe the effect of prior hypothyroidism on the severity of COVID-19.
Results
TFT abnormalities were common. Low free T3 (FT3), high thyroid-stimulating hormone (TSH) and low TSH were seen in 56 (23.7%), 15 (6.4%) and 9 (3.8%) patients, respectively. The median levels of TSH (2.06 vs 1.26 mIU/mL, P = 0.001) and FT3 (2.94 vs 2.47 pg/mL, P < 0.001) were significantly lower in severe disease. Previous hypothyroid status (n = 43) was associated with older age, higher frequency of comorbidities, higher FT4 and lower FT3. TFT did not correlate with markers of inflammation (except lactate dehydrogenase); however, FT3 and TSH negatively correlated with outcome severity score and duration of hospital stay. Cox regression analysis showed that low FT3 was associated with severe COVID-19 (P = 0.032, HR 0.302; CI 0.101–0.904), irrespective of prior hypothyroidism.
Conclusions
Functional thyroid abnormalities (low FT3 and low TSH) are frequently seen in hospitalized patients of COVID-19. Although these abnormalities did not correlate with markers of inflammation, this study shows that low FT3 at admission independently predicts the severity of COVID-19.
Search for other papers by Cheryl M Isherwood in
Google Scholar
PubMed
Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Search for other papers by Debra J Skene in
Google Scholar
PubMed
Search for other papers by Jonathan D Johnston in
Google Scholar
PubMed
Obesity is a major cause of type 2 diabetes. Transition from obesity to type 2 diabetes manifests in the dysregulation of hormones controlling glucose homeostasis and inflammation. As metabolism is a dynamic process that changes across 24 h, we assessed diurnal rhythmicity in a panel of 10 diabetes-related hormones. Plasma hormones were analysed every 2 h over 24 h in a controlled laboratory study with hourly isocaloric drinks during wake. To separate effects of body mass from type 2 diabetes, we recruited three groups of middle-aged men: an overweight (OW) group with type 2 diabetes and two control groups (lean and OW). Average daily concentrations of glucose, triacylglycerol and all the hormones except visfatin were significantly higher in the OW group compared to the lean group (P < 0.001). In type 2 diabetes, glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide and glucagon-like peptide-1 increased further (P < 0.05), whereas triacylglycerol, ghrelin and plasminogen activator inhibitor-1 concentrations were significantly lower compared to the OW group (P < 0.001). Insulin, C-peptide, glucose-dependent insulinotropic peptide and leptin exhibited significant diurnal rhythms in all study groups (P < 0.05). Other hormones were only rhythmic in 1 or 2 groups. In every group, hormones associated with glucose regulation (insulin, C-peptide, glucose-dependent insulinotropic peptide, ghrelin and plasminogen activator inhibitor-1), triacylglycerol and glucose peaked in the afternoon, whereas glucagon and hormones associated with appetite and inflammation peaked at night. Thus being OW with or without type 2 diabetes significantly affected hormone concentrations but did not affect the timing of the hormonal rhythms.
Search for other papers by Henrik H Thomsen in
Google Scholar
PubMed
Search for other papers by Holger J Møller in
Google Scholar
PubMed
Search for other papers by Christian Trolle in
Google Scholar
PubMed
Search for other papers by Kristian A Groth in
Google Scholar
PubMed
Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Search for other papers by Christian Høst in
Google Scholar
PubMed
Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Soluble CD163 (sCD163) is a novel marker linked to states of low-grade inflammation such as diabetes, obesity, liver disease, and atherosclerosis, all prevalent in subjects with Turner syndrome (TS) and Klinefelter syndrome (KS). We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards to treatment with sex hormone therapy in males with and without KS and females with and without TS. Males with KS (n=70) and age-matched controls (n=71) participating in a cross-sectional study and 12 healthy males from an experimental hypogonadism study. Females with TS (n=8) and healthy age-matched controls (n=8) participating in a randomized crossover trial. The intervention comprised of treatment with sex steroids. Males with KS had higher levels of sCD163 compared with controls (1.75 (0.47–6.90) and 1.36 (0.77–3.11) respectively, P<0.001) and the levels correlated to plasma testosterone (r=−0.31, P<0.01), BMI (r=0.42, P<0.001), and homeostasis model of assessment insulin resistance (r=0.46, P<0.001). Treatment with testosterone did not significantly lower sCD163. Females with TS not receiving hormone replacement therapy (HRT) had higher levels of sCD163 than those of their age-matched healthy controls (1.38±0.44 vs 0.91±0.40, P=0.04). HRT and oral contraceptive therapy decreased sCD163 in TS by 22% (1.07±0.30) and in controls by 39% (0.55±0.36), with significance in both groups (P=0.01 and P=0.04). We conclude that levels of sCD163 correlate with endogenous testosterone in KS and are higher in KS subjects compared with controls, but treatment did not significantly lower levels. Both endogenous and exogenous estradiol in TS was associated with lower levels of sCD163.
Department of Clinical Research, University of Basel Hospital, Basel, Switzerland
Search for other papers by Fahim Ebrahimi in
Google Scholar
PubMed
Department of Clinical Research, University of Basel Hospital, Basel, Switzerland
Search for other papers by Sandrine A Urwyler in
Google Scholar
PubMed
Division of Endocrinology, Diabetes and Metabolism, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
Search for other papers by Philipp Schuetz in
Google Scholar
PubMed
Division of Endocrinology, Diabetes and Metabolism, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
Search for other papers by Beat Mueller in
Google Scholar
PubMed
Search for other papers by Luca Bernasconi in
Google Scholar
PubMed
Search for other papers by Peter Neyer in
Google Scholar
PubMed
Department of Clinical Research, University of Basel Hospital, Basel, Switzerland
Search for other papers by Marc Y Donath in
Google Scholar
PubMed
Department of Clinical Research, University of Basel Hospital, Basel, Switzerland
Search for other papers by Mirjam Christ-Crain in
Google Scholar
PubMed
Background
Anti-inflammatory treatment with interleukin-1 (IL-1) antagonism decreases both cortisol and adrenocorticotropin hormone (ACTH) levels in individuals with obesity in short term. However, it remains unknown whether these effects persist upon prolonged treatment.
Methods
In this double-blind, parallel-group trial involving patients with features of the metabolic syndrome, 33 patients were randomly assigned to receive 100 mg of anakinra (recombinant human IL-1 receptor antagonist) subcutaneously twice-daily and 34 patients to receive placebo for 4 weeks. For this analysis, change in cortisol and ACTH levels from baseline to 4 weeks were predefined end points of the trial.
Results
The mean age was 54 years, baseline cortisol levels were 314 nmol/L (IQR 241–385) and C-reactive protein (CRP) levels were 3.4 mg/L (IQR 1.7–4.8). Treatment with anakinra led to a significant decrease in cortisol levels at day 1 when compared to placebo with an adjusted between-group difference of 28 nmol/L (95% CI, −7 to −43; P = 0.03). After 4 weeks, the cortisol-lowering effect of anakinra was attenuated and overall was statistically not significant (P = 0.72). Injection-site reactions occurred in 21 patients receiving anakinra and were associated with higher CRP and cortisol levels.
Conclusions
IL-1 antagonism decreases cortisol levels in male patients with obesity and chronic low-grade inflammation on the short term. After prolonged treatment, this effect is attenuated, probably due to injection-site reactions (ClinicalTrials.gov, NCT02672592).
Search for other papers by Angela Köninger in
Google Scholar
PubMed
Search for other papers by Philippos Edimiris in
Google Scholar
PubMed
Search for other papers by Laura Koch in
Google Scholar
PubMed
Search for other papers by Antje Enekwe in
Google Scholar
PubMed
Search for other papers by Claudia Lamina in
Google Scholar
PubMed
Search for other papers by Sabine Kasimir-Bauer in
Google Scholar
PubMed
Search for other papers by Rainer Kimmig in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, Division of Genetic Epidemiology, Vitateq Biotechnology GmbH, University of Duisburg-Essen, D-45122 Essen, Germany
Search for other papers by Hans Dieplinger in
Google Scholar
PubMed
Oxidative stress seems to be present in patients with polycystic ovary syndrome (PCOS). The aim of this study was to evaluate the correlation between characteristics of PCOS and serum concentrations of afamin, a novel binding protein for the antioxidant vitamin E. A total of 85 patients with PCOS and 76 control subjects were investigated in a pilot cross-sectional study design between 2009 and 2013 in the University Hospital of Essen, Germany. Patients with PCOS were diagnosed according to the Rotterdam ESHRE/ASRM-sponsored PCOS Consensus Workshop Group. Afamin and diagnostic parameters of PCOS were determined at early follicular phase. Afamin concentrations were significantly higher in patients with PCOS than in controls (odds ratio (OR) for a 10 mg/ml increase in afamin=1.3, 95% CI=1.08–1.58). This difference vanished in a model adjusting for age, BMI, free testosterone index (FTI), and sex hormone-binding globulin (SHBG) (OR=1.05, 95% CI=0.80–1.38). In patients with PCOS, afamin correlated significantly with homeostatic model assessment-insulin resistance (HOMA-IR), fasting glucose, BMI, FTI, and SHBG (P<0.001), but in a multivariate linear model, only HOMA-IR remained significantly associated with afamin (P=0.001). No correlation was observed between afamin and androgens, LH, FSH, LH/FSH ratio, antral follicle count, ovarian volume, or anti-Müllerian hormone. In conclusion, elevated afamin values may indicate a state of oxidative stress and inflammation, strongly associated with IR and offering an indicator of impaired glucose tolerance in patients with PCOS irrespective of obesity.
Department of Endocrinology, Zunyi Medical University, Zunyi, China
Search for other papers by Mengxue Yang in
Google Scholar
PubMed
Search for other papers by Bowen Sun in
Google Scholar
PubMed
Search for other papers by Jianhui Li in
Google Scholar
PubMed
Search for other papers by Bo Yang in
Google Scholar
PubMed
Search for other papers by Jie Xu in
Google Scholar
PubMed
Search for other papers by Xue Zhou in
Google Scholar
PubMed
Search for other papers by Jie Yu in
Google Scholar
PubMed
Search for other papers by Xuan Zhang in
Google Scholar
PubMed
Search for other papers by Qun Zhang in
Google Scholar
PubMed
Search for other papers by Shan Zhou in
Google Scholar
PubMed
Search for other papers by Xiaohua Sun in
Google Scholar
PubMed
Objectives
The pathogenesis of Graves’ disease (GD) remains unclear. In terms of environmental factors, GD development may be associated with chronic inflammation caused by alteration of the intestinal flora. This study explored the association of intestinal flora alteration with the development of GD among the Han population in southwest China.
Design and methods
Fifteen GD patients at the Affiliated Hospital of Zunyi Medical College between March 2016 and March 2017 were randomly enrolled. Additionally, 15 sex- and age-matched healthy volunteers were selected as the control group during the same period. Fresh stool samples were collected, and bacterial 16S RNA was extracted and amplified for gene sequencing with the Illumina MiSeq platform. The sequencing results were subjected to operational taxonomic unit-based classification, classification verification, alpha diversity analysis, taxonomic composition analysis and partial least squares-discriminant analysis (PLS-DA).
Results
The diversity indices for the GD group were lower than those for the control group. The GD group showed significantly higher abundances of Firmicutes, Proteobacteria and Actinobacillus and a higher Firmicutes/Bacteroidetes ratio than the control group. PLS-DA suggested the satisfactory classification of the flora between the GD group and the control group. The abundances of the genera Oribacterium, Mogibacterium, Lactobacillus, Aggregatibacter and Mogibacterium were significantly higher in the GD group than in the control group (P < 0.05).
Conclusions
The intestinal flora of GD patients was significantly different from that of the healthy population. Thus, alteration of intestinal flora may be associated with the development of GD.
Search for other papers by Ermina Bach in
Google Scholar
PubMed
Search for other papers by Niels Møller in
Google Scholar
PubMed
Search for other papers by Jens Otto L Jørgensen in
Google Scholar
PubMed
Search for other papers by Mads Buhl in
Google Scholar
PubMed
Search for other papers by Holger Jon Møller in
Google Scholar
PubMed
Aims/hypothesis
The macrophage-specific glycoprotein sCD163 has emerged as a biomarker of low-grade inflammation in the metabolic syndrome and related disorders. High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-mediated shedding of the protein from macrophage surfaces including Kupffer cells. The aim of this study was to investigate if low-grade endotoxinemia in human subjects results in increasing levels of sCD163 in a cortisol-dependent manner.
Methods
We studied eight male hypopituitary patients and eight age- and gender-matched healthy controls during intravenous low-dose LPS or placebo infusion administered continuously over 360 min. Furthermore, we studied eight healthy volunteers with bilateral femoral vein and artery catheters during a 360-min infusion with saline and low-dose LPS in each leg respectively.
Results:
Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, continuous femoral artery infusion did not result in increased sCD163.
Conclusion:
Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen in the metabolic syndrome in both controls and hypopituitary patients. This suggests a direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no effect of local endotoxinemia on levels of serum sCD163.
Search for other papers by Amar Osmancevic in
Google Scholar
PubMed
Search for other papers by Kristin Ottarsdottir in
Google Scholar
PubMed
Search for other papers by Margareta Hellgren in
Google Scholar
PubMed
Search for other papers by Ulf Lindblad in
Google Scholar
PubMed
Search for other papers by Bledar Daka in
Google Scholar
PubMed
Context
Obesity seems to decrease levels of testosterone. It is still unknown what role inflammation plays in the secretion of testosterone in men.
Objective
The objective is to study the association between levels of C-reactive protein and testosterone and its role in predicting biochemical hypogonadism in men.
Design
This was a longitudinal observational study between 2002 and 2014 in Sweden.
Patients or other participants
At the first visit, a random population sample of 1400 men was included, and 645 men fulfilled a similar protocol at a 10-year follow-up visit. After exclusion, 625 men remained to be included in the final analyses.
Main outcome measure(s)
Serum concentrations of testosterone and C-reactive protein (CRP) were measured at both visits. Bioavailable testosterone was calculated. Biochemical hypogonadism was defined as total testosterone levels <8 nmol/L.
Results
At the first visit and in the longitudinal analyses, a strong association was found between high levels of CRP and low levels of calculated bioavailable testosterone even after adjustments for age, waist–hip ratio, hypertension, smoking, type 2 diabetes, and leisuretime physical activity (B = −0.31, 95% CI −0.49 to −0.13, P = 0.001, B = −0.26, 95% CI −0.41 to −0.11, P = 0.001). Similarly, increase with one s. d. in CRP was associated with increased risk of having hypogonadism after adjustment in the final model (odds ratio (OR) 1.76, 95% CI 1.12–2.78, P = 0.015, OR 1.80, 95% CI 1.16–2.78, P =0.008).
Conclusions
In this representative cohort of men in southwestern Sweden, high levels of CRP were longitudinally associated with low concentrations of calculated bioavailable testosterone and increased risk of biochemical hypogonadism.
Search for other papers by Jiaxin Zhang in
Google Scholar
PubMed
Search for other papers by Jinlan Jiang in
Google Scholar
PubMed
Search for other papers by Yao Qin in
Google Scholar
PubMed
Search for other papers by Yihui Zhang in
Google Scholar
PubMed
Search for other papers by Yungang Wu in
Google Scholar
PubMed
Search for other papers by Huadong Xu in
Google Scholar
PubMed
Purpose
This study aims to investigate the associations of the systemic immune-inflammation index (SII) with bone mineral density (BMD) and osteoporosis in adult females from a nationally representative sample.
Methods
A cross-sectional study was performed among 4092 females aged ≥20 years from the National Health and Nutrition Examination Survey 2007–2010. Linear and logistic regressions were applied to explore the relationships of SII with BMD and the risk of osteoporosis, respectively.
Results
Linear regression analyses found that a doubling of SII levels was significantly correlated with a 1.39% (95% CI: 0.57%, 2.20%) decrease in total femur BMD, a 1.16% (95% CI: 0.31%, 2.00%) decrease in femur neck BMD, a 1.73% (95% CI: 0.78%, 2.66%) decrease in trochanter BMD, and a 1.35% (95% CI: 0.50%, 2.20%) decrease in intertrochanteric BMD among postmenopausal women, after adjusting for covariates. Logistic regression analyses showed that compared with postmenopausal women in the lowest SII quartile, those in the highest quartile had higher risks of osteoporosis in the total femur (odds ratio (OR) = 1.70, 95% CI: 1.04, 2.76), trochanter (OR = 1.86, 95% CI: 1.07, 3.38), intertrochanter (OR = 2.01, 95% CI: 1.05, 4.04) as well as overall osteoporosis (OR = 1.57, 95% CI: 1.04, 2.37). In contrast, there was no significant association between SII and BMD in premenopausal women.
Conclusions
SII levels were negatively associated with BMD levels in postmenopausal women but not in premenopausal women. Elevated SII levels could be a potential risk factor for osteoporosis in postmenopausal women.
Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
Search for other papers by Clara Lundetoft Clausen in
Google Scholar
PubMed
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
Search for other papers by Hanne Frederiksen in
Google Scholar
PubMed
Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Camilla Koch Ryrsø in
Google Scholar
PubMed
Search for other papers by Arnold Matovu Dungu in
Google Scholar
PubMed
Search for other papers by Maria Hein Hegelund in
Google Scholar
PubMed
Search for other papers by Daniel Faurholt-Jepsen in
Google Scholar
PubMed
Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Rikke Krogh-Madsen in
Google Scholar
PubMed
Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Birgitte Lindegaard in
Google Scholar
PubMed
Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
Search for other papers by Line Lund Kårhus in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Thomas Benfield in
Google Scholar
PubMed
Aim
To explore pituitary–gonadal hormone concentrations and assess their association with inflammation, severe respiratory failure, and mortality in hospitalized men and women with COVID-19, and compare these to hormone concentrations in hospitalized patients with bacterial community-acquired pneumonia (CAP) and influenza virus CAP and to concentrations in a reference group of healthy individuals.
Methods
Serum concentrations of testosterone, estrone sulfate, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and interleukin-6 (IL-6) were measured within 4 days of admission. Associations were assessed by logistic regression analysis in patients with COVID-19, and results were reported as odds ratio with 95% CI per two-fold reduction after adjustment for age, comorbidities, days to sample collection, and IL-6 concentrations.
Results
In total, 278 patients with COVID-19, 21 with influenza virus CAP, and 76 with bacterial CAP were included. Testosterone concentrations were suppressed in men hospitalized with COVID-19, bacterial and influenza virus CAP, and moderately suppressed in women. Reductions in testosterone (OR: 3.43 (1.14–10.30), P = 0.028) and LH (OR: 2.51 (1.28–4.92), P = 0.008) were associated with higher odds of mehanical ventilation (MV) in men with COVID-19. In women with COVID-19, reductions in LH (OR: 3.34 (1.02–10-90), P = 0.046) and FSH (OR: 2.52 (1.01–6.27), P = 0.047) were associated with higher odds of MV.
Conclusion
Low testosterone and LH concentrations were predictive of severe respiratory failure in men with COVID-19, whereas low concentrations of LH and FSH were predictive of severe respiratory failure in women with COVID-19.