Search Results

You are looking at 31 - 40 of 194 items for

  • Abstract: Bone x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
Clear All Modify Search
Maxime Duval Department of Medicine, Clinique Jules Verne, Nantes, France

Search for other papers by Maxime Duval in
Google Scholar
PubMed
Close
,
Kalyane Bach-Ngohou Department of Biology, Laboratory of Clinical Biochemistry, CHU Nantes, Nantes, France

Search for other papers by Kalyane Bach-Ngohou in
Google Scholar
PubMed
Close
,
Damien Masson Department of Biology, Laboratory of Clinical Biochemistry, CHU Nantes, Nantes, France

Search for other papers by Damien Masson in
Google Scholar
PubMed
Close
,
Camille Guimard Department of Emergency Medicine, CHU Nantes, Nantes, France

Search for other papers by Camille Guimard in
Google Scholar
PubMed
Close
,
Philippe Le Conte Department of Emergency Medicine, CHU Nantes, Nantes, France

Search for other papers by Philippe Le Conte in
Google Scholar
PubMed
Close
, and
David Trewick Department of Medicine, Clinique Jules Verne, Nantes, France
Department of Emergency Medicine, CHU Nantes, Nantes, France

Search for other papers by David Trewick in
Google Scholar
PubMed
Close

Objective

Severe hypocalcemia (Ca <1.9 mmol/L) is often considered an emergency because of a potential risk of cardiac arrest or seizures. However, there is little evidence to support this. The aim of our study was to assess whether severe hypocalcemia was associated with immediately life-threatening cardiac arrhythmias or neurological complications.

Methods

A retrospective observational study was carried out over a 2-year period in the Adult Emergency Department (ED) of Nantes University Hospital. All patients who had a protein-corrected calcium concentration measure were eligible for inclusion. Patients with multiple myeloma were excluded. The primary outcome was the number of life-threatening cardiac arrhythmias and/or neurological complications during the stay in the ED.

Results

A total of 41,823 patients had protein-corrected calcium (pcCa) concentrations measured, 155 had severe hypocalcemia, 22 were excluded because of myeloma leaving 133 for analysis. Median pcCa concentration was 1.73 mmol/L (1.57–1.84). Seventeen (12.8%) patients presented a life-threatening condition, 14 (10.5%) neurological and 3 (2.2%) cardiac during ED stay. However, these complications could be explained by the presence of underlying co-morbidities and or electrolyte disturbances other than hypocalcemia. Overall, 24 (18%) patients died in hospital. Vitamin D deficiency, chronic kidney disease and hypoparathyroidism were the most frequently found causes of hypocalcemia.

Conclusion

Thirteen percent of patients with severe hypocalcemia presented a life-threatening cardiac or neurological complication on the ED. However, a perfectly valid alternative cause could account for these complications. Further research is warranted to define the precise role of hypocalcemia.

Open access
Veronica Kieffer
Search for other papers by Veronica Kieffer in
Google Scholar
PubMed
Close
,
Kate Davies University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Kate Davies in
Google Scholar
PubMed
Close
,
Christine Gibson University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Christine Gibson in
Google Scholar
PubMed
Close
,
Morag Middleton University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Morag Middleton in
Google Scholar
PubMed
Close
,
Jean Munday University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Jean Munday in
Google Scholar
PubMed
Close
,
Shashana Shalet University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Shashana Shalet in
Google Scholar
PubMed
Close
,
Lisa Shepherd University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Lisa Shepherd in
Google Scholar
PubMed
Close
, and
Phillip Yeoh University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Phillip Yeoh in
Google Scholar
PubMed
Close

This competency framework was developed by a working group of endocrine specialist nurses with the support of the Society for Endocrinology to enhance the clinical care that adults with an endocrine disorder receive. Nurses should be able to demonstrate that they are functioning at an optimal level in order for patients to receive appropriate care. By formulating a competency framework from which an adult endocrine nurse specialist can work, it is envisaged that their development as professional practitioners can be enhanced. This is the second edition of the Competency Framework for Adult Endocrine Nursing. It introduces four new competencies on benign adrenal tumours, hypo- and hyperparathyroidism, osteoporosis and polycystic ovary syndrome. The authors and the Society for Endocrinology welcome constructive feedback on the document, both nationally and internationally, in anticipation that further developments and ideas can be incorporated into future versions.

Open access
Souad Daamouch Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Souad Daamouch in
Google Scholar
PubMed
Close
,
Sylvia Thiele Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Close
,
Lorenz Hofbauer Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Lorenz Hofbauer in
Google Scholar
PubMed
Close
, and
Martina Rauner Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Martina Rauner in
Google Scholar
PubMed
Close

The link between obesity and low bone strength has become a significant medical concern. The canonical Wnt signaling pathway is a key regulator of mesenchymal stem cell differentiation into either osteoblasts or adipocytes with active Wnt signaling promoting osteoblastogenesis. Our previous research indicated that Dickkopf-1 (Dkk1), a Wnt inhibitor, is upregulated in bone tissue in obesity and that osteoblast-derived Dkk1 drives obesity-induced bone loss. However, Dkk1 is also produced by adipocytes, but the impact of adipogenic Dkk1 on bone remodeling and its role in obesity-induced bone loss remain unclear. Thus, in this study, we investigated the influence of adipogenic Dkk1 on bone homeostasis and obesity-induced bone loss in mice. To that end, deletion of Dkk1 in adipocytes was induced by tamoxifen administration into 8-week-old male Dkk1fl/fl;AdipoQcreERT2 mice. Bone and fat mass were analyzed at 12 and 20 weeks of age. Obesity was induced in 8-week-old male Dkk1fl/fl;AdipoQcre mice with a high-fat diet (HFD) rich in saturated fats for 12 weeks. We observed that 12-week-old male mice without adipogenic Dkk1 had a significant increase in trabecular bone volume in the vertebrae and femoral bones. While histological and serological bone formation markers were not different, the number of osteoclasts and adipocytes was decreased in the vertebral bones of Dkk1fl/fl;AdipoQcre-positive mice. Despite the increased bone mass in 12-week-old male mice, at 20 weeks of age, there was no difference in the bone volume between the controls and Dkk1fl/fl;AdipoQcre-positive mice. Also, Dkk1fl/fl;AdipoQcre-positive mice were not protected from HFD-induced bone loss. Even though mRNA expression levels of Sost, another important Wnt inhibitor, in bone from Dkk1-deficient mice fed with HFD were decreased compared to Dkk1-sufficient mice on an HFD, this did not prevent the HFD-induced suppression of bone formation. In conclusion, adipogenic Dkk1 may play a transient role in bone mass regulation during adolescence, but it does not contribute to bone homeostasis or obesity-induced bone loss later in life.

Open access
Shuang Ye Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Shuang Ye in
Google Scholar
PubMed
Close
,
Yuanyuan Xu Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Yuanyuan Xu in
Google Scholar
PubMed
Close
,
Jiehao Li Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Jiehao Li in
Google Scholar
PubMed
Close
,
Shuhui Zheng Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

Search for other papers by Shuhui Zheng in
Google Scholar
PubMed
Close
,
Peng Sun Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

Search for other papers by Peng Sun in
Google Scholar
PubMed
Close
, and
Tinghuai Wang Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Tinghuai Wang in
Google Scholar
PubMed
Close

The role of G protein-coupled estrogen receptor 1 (GPER) signaling, including promotion of Ezrin phosphorylation (which could be activated by estrogen), has not yet been clearly identified in triple-negative breast cancer (TNBC). This study aimed to evaluate the prognostic value of GPER and Ezrin in TNBC patients. Clinicopathologic features including age, menopausal status, tumor size, nuclear grade, lymph node metastasis, AJCC TNM stage, and ER, PR and HER-2 expression were evaluated from 249 TNBC cases. Immunohistochemical staining of GPER and Ezrin was performed on TNBC pathological sections. Kaplan–Meier analyses, as well as logistic regressive and Cox regression model tests were applied to evaluate the prognostic significance between different subgroups. Compared to the GPER-low group, the GPER-high group exhibited higher TNM staging (P = 0.021), more death (P < 0.001), relapse (P < 0.001) and distant events (P < 0.001). Kaplan–Meier analysis showed that GPER-high patients had a decreased OS (P < 0.001), PFS (P < 0.001), LRFS (P < 0.001) and DDFS (P < 0.001) than GPER-low patients. However, these differences in prognosis were not statistically significant in post-menopausal patients (OS, P = 0.8617; PFS, P = 0.1905; LRFS, P = 0.4378; DDFS, P = 0.2538). There was a significant positive correlation between GPER and Ezrin expression level (R = 0.508, P < 0.001) and the effect of Ezrin on survival prognosis corresponded with GPER. Moreover, a multivariable analysis confirmed that GPER and Ezrin level were both significantly associated with poor DDFS (HR: 0.346, 95% CI 0.182–0.658, P = 0.001; HR: 0.320, 95% CI 0.162–0.631, P = 0.001). Thus, overexpression of GPER and Ezrin may contribute to aggressive behavior and indicate unfavorable prognosis in TNBC; this may correspond to an individual’s estrogen levels.

Open access
Kristin Ottarsdottir Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Kristin Ottarsdottir in
Google Scholar
PubMed
Close
,
Margareta Hellgren Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Margareta Hellgren in
Google Scholar
PubMed
Close
,
David Bock Biostatistics, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by David Bock in
Google Scholar
PubMed
Close
,
Anna G Nilsson Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Anna G Nilsson in
Google Scholar
PubMed
Close
, and
Bledar Daka Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Bledar Daka in
Google Scholar
PubMed
Close

Purpose

We aimed to investigate the association between SHBG and the homeostatic model assessment of insulin resistance (HOMA-Ir) in men and women in a prospective observational study.

Methods

The Vara-Skövde cohort is a random population of 2816 participants living in southwestern Sweden, aged 30–74. It was recruited between 2002 and 2005, and followed up in 2012–2014. After excluding participants on insulin therapy or hormone replacement therapy, 1193 individuals (649 men, 544 women) were included in the present study. Fasting blood samples were collected at both visits and stored in biobank. All participants were physically examined by a trained nurse. SHBG was measured with immunoassay technique. Linear regressions were computed to investigate the association between SHBG and HOMA-Ir both in cross-sectional and longitudinal analyses, adjusting for confounding factors.

Results

The mean follow-up time was 9.7 ± 1.4 years. Concentrations of SHBG were significantly inversely associated with log transformed HOMA-Ir in all groups with estimated standardized slopes (95% CI): men: −0.20 (−0.3;−0.1), premenopausal women: −0.26 (−0.4;−0.2), postmenopausal women: −0.13 (−0.3;−0.0) at visit 1. At visit 2 the results were similar. When comparing the groups, a statistically significant difference was found between men and post-menopausal women (0.12 (0.0;0.2) P value = 0.04). In the fully adjusted model, SHBG at visit 1 was also associated with HOMA-Ir at visit 2, and the estimated slopes were −0.16 (−0.2;−0.1), −0.16 (−0.3;−0.1) and −0.07 (−0.2;0.0) for men, premenopausal and postmenopausal women, respectively.

Main conclusion

Levels of SHBG predicted the development of insulin resistance in both men and women, regardless of menopausal state.

Open access
Laura J Reid Edinburgh Centre for Endocrinology and Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Laura J Reid in
Google Scholar
PubMed
Close
,
Bala Muthukrishnan Edinburgh Centre for Endocrinology and Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Bala Muthukrishnan in
Google Scholar
PubMed
Close
,
Dilip Patel Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Dilip Patel in
Google Scholar
PubMed
Close
,
Mike S Crane Department of Clinical Biochemistry, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Mike S Crane in
Google Scholar
PubMed
Close
,
Murat Akyol Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Murat Akyol in
Google Scholar
PubMed
Close
,
Andrew Thomson Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Andrew Thomson in
Google Scholar
PubMed
Close
,
Jonathan R Seckl Edinburgh Centre for Endocrinology and Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
Centre for Cardiovascular Science, Queen’s Medical Research Unit, University of Edinburgh, Edinburgh, UK

Search for other papers by Jonathan R Seckl in
Google Scholar
PubMed
Close
, and
Fraser W Gibb Edinburgh Centre for Endocrinology and Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Fraser W Gibb in
Google Scholar
PubMed
Close

Objective

Primary hyperparathyroidism (PHPT) is a common reason for referral to endocrinology but the evidence base guiding assessment is limited. We evaluated the clinical presentation, assessment and subsequent management in PHPT.

Design

Retrospective cohort study.

Patients

PHPT assessed between 2006 and 2014 (n = 611) in a university hospital.

Measurements

Symptoms, clinical features, biochemistry, neck radiology and surgical outcomes.

Results

Fatigue (23.8%), polyuria (15.6%) and polydipsia (14.9%) were associated with PHPT biochemistry. Bone fracture was present in 16.4% but was not associated with biochemistry. A history of nephrolithiasis (10.0%) was associated only with younger age (P = 0.006) and male gender (P = 0.037). Thiazide diuretic discontinuation was not associated with any subsequent change in calcium (P = 0.514). Urine calcium creatinine clearance ratio (CCCR) was <0.01 in 18.2% of patients with confirmed PHPT. Older age (P < 0.001) and lower PTH (P = 0.043) were associated with failure to locate an adenoma on ultrasound (44.0% of scans). When an adenoma was identified on ultrasound the lateralisation was correct in 94.5%. Non-curative surgery occurred in 8.2% and was greater in those requiring more than one neck imaging modality (OR 2.42, P = 0.035).

Conclusions

Clinical features associated with PHPT are not strongly related to biochemistry. Thiazide cessation does not appear to attenuate hypercalcaemia. PHPT remains the likeliest diagnosis in the presence of low CCCR. Ultrasound is highly discriminant when an adenoma is identified but surgical failure is more likely when more than one imaging modality is required.

Open access
Haojie Zhang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Haojie Zhang in
Google Scholar
PubMed
Close
,
Yuke Cui Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yuke Cui in
Google Scholar
PubMed
Close
,
Ruihua Dong Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China

Search for other papers by Ruihua Dong in
Google Scholar
PubMed
Close
,
Wen Zhang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Wen Zhang in
Google Scholar
PubMed
Close
,
Shihan Chen Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Shihan Chen in
Google Scholar
PubMed
Close
,
Heng Wan Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Heng Wan in
Google Scholar
PubMed
Close
,
Chi Chen Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Chi Chen in
Google Scholar
PubMed
Close
,
Yi Chen Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yi Chen in
Google Scholar
PubMed
Close
,
Yuying Wang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yuying Wang in
Google Scholar
PubMed
Close
,
Chunfang Zhu Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Chunfang Zhu in
Google Scholar
PubMed
Close
,
Bo Chen Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China

Search for other papers by Bo Chen in
Google Scholar
PubMed
Close
,
Ningjian Wang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Ningjian Wang in
Google Scholar
PubMed
Close
, and
Yingli Lu Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yingli Lu in
Google Scholar
PubMed
Close

Background

Bone is thought to be the reservoir of the human lead burden, and vitamin D is associated with bone turnover. We aimed to explore whether exposure to lower 25-hydroxy vitamin D (25(OH)D) levels was associated with higher blood lead levels (BLLs) by increasing the bone turnover rate in individuals with type 2 diabetes.

Methods

A total of 4103 type 2 diabetic men and postmenopausal women in Shanghai, China, were enrolled in 2018. Their 25(OH)D, β-C-terminal telopeptide (β-CTX), N-MID osteocalcin and procollagen type 1 N-peptide (P1NP) levels were detected. Their BLLs were determined by atomic absorption spectrometry. Mediation analyses were performed to identify the possible role that bone turnover played in the underlying mechanisms.

Results

In both the men and postmenopausal women, all three bone turnover markers were inversely associated with 25(OH)D and positively associated with the BLL (all P < 0.01) after adjusting for age, current smoking habits, metabolic parameters, duration of diabetes, vitamin D intake, and use of anti-osteoporosis medication. In the mediation analyses, none of the direct associations between 25(OH)D and BLL was significant for the three bone turnover markers, but all three bone turnover markers were found to be significant mediators of the indirect associations between 25(OH)D and BLL.

Conclusion

The association between vitamin D and BLL was fully mediated by bone turnover markers in type 2 diabetic patients (mediation effect). This finding suggested that vitamin D may protect against blood lead exposure from the bone reservoir by decreasing bone turnover in individuals with type 2 diabetes.

Open access
Stephen A Martin Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Stephen A Martin in
Google Scholar
PubMed
Close
,
Kenneth A Philbrick Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Kenneth A Philbrick in
Google Scholar
PubMed
Close
,
Carmen P Wong Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Carmen P Wong in
Google Scholar
PubMed
Close
,
Dawn A Olson Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Dawn A Olson in
Google Scholar
PubMed
Close
,
Adam J Branscum Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Adam J Branscum in
Google Scholar
PubMed
Close
,
Donald B Jump Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Donald B Jump in
Google Scholar
PubMed
Close
,
Charles K Marik Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Charles K Marik in
Google Scholar
PubMed
Close
,
Jonathan M DenHerder Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Jonathan M DenHerder in
Google Scholar
PubMed
Close
,
Jennifer L Sargent Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Jennifer L Sargent in
Google Scholar
PubMed
Close
,
Russell T Turner Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Russell T Turner in
Google Scholar
PubMed
Close
, and
Urszula T Iwaniec Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Urszula T Iwaniec in
Google Scholar
PubMed
Close

Mice are a commonly used model to investigate aging-related bone loss but, in contrast to humans, mice exhibit cancellous bone loss prior to skeletal maturity. The mechanisms mediating premature bone loss are not well established. However, our previous work in female mice suggests housing temperature is a critical factor. Premature cancellous bone loss was prevented in female C57BL/6J mice by housing the animals at thermoneutral temperature (where basal rate of energy production is at equilibrium with heat loss). In the present study, we determined if the protective effects of thermoneutral housing extend to males. Male C57BL/6J mice were housed at standard room temperature (22°C) or thermoneutral (32°C) conditions from 5 (rapidly growing) to 16 (slowly growing) weeks of age. Mice housed at room temperature exhibited reductions in cancellous bone volume fraction in distal femur metaphysis and fifth lumbar vertebra; these effects were abolished at thermoneutral conditions. Mice housed at thermoneutral temperature had higher levels of bone formation in distal femur (based on histomorphometry) and globally (serum osteocalcin), and lower global levels of bone resorption (serum C-terminal telopeptide of type I collagen) compared to mice housed at room temperature. Thermoneutral housing had no impact on bone marrow adiposity but resulted in higher abdominal white adipose tissue and serum leptin. The overall magnitude of room temperature housing-induced cancellous bone loss did not differ between male (current study) and female (published data) mice. These findings highlight housing temperature as a critical experimental variable in studies using mice of either sex to investigate aging-related changes in bone metabolism.

Open access
Petar Milovanovic Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Petar Milovanovic in
Google Scholar
PubMed
Close
and
Björn Busse Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Search for other papers by Björn Busse in
Google Scholar
PubMed
Close

An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.

Open access
Herjan J T Coelingh Bennink Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Close
,
Jan Krijgh Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Close
,
Jan F M Egberts Terminal 4 Communications, Hilversum, The Netherlands

Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Close
,
Maria Slootweg Independent Consultant, Zeist, The Netherlands

Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Close
,
Harm H E van Melick Department of Urology, St. Antonius Hospital, Nieuwegein, The Netherlands

Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Close
,
Erik P M Roos Department of Urology, Antonius Hospital, Sneek, The Netherlands

Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Close
,
Diederik M Somford Department of Urology, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands

Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Close
,
Yvette Zimmerman Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Close
,
Iman J Schultz Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Close
,
Noel W Clarke The Christie and Salford Royal NHS Foundation Trusts, Manchester, UK

Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Close
,
R Jeroen A van Moorselaar Department of Urology, Amsterdam UMC, VU University, Amsterdam, The Netherlands

Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Close
, and
Frans M J Debruyne Andros Clinics, Arnhem, The Netherlands

Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
Close

The purpose of androgen deprivation therapy (ADT) in prostate cancer (PCa), using luteinizing hormone-releasing hormone agonists (LHRHa) or gonadotrophin-releasing hormone antagonists, is to suppress the levels of testosterone. Since testosterone is the precursor of estradiol (E2), one of the major undesired effects of ADT is the concomitant loss of E2, causing among others an increased bone turnover and bone loss and an increased risk of osteoporosis and fractures. Therefore, the guidelines for ADT indicate to combine ADT routinely with bone-sparing agents such as bisphosphonates, denosumab or selective estrogen receptor modulators. However, these compounds may have side effects and some require inconvenient parenteral administration. Co-treatment with estrogens is an alternative approach to prevent bone loss and at the same time, to avoid other side effects caused by the loss of estrogens, which is the topic explored in the present narrative review. Estrogens investigated in PCa patients include parenteral or transdermal E2, diethylstilbestrol (DES), and ethinylestradiol (EE) as monotherapy, or high-dose estetrol (HDE4) combined with ADT. Cardiovascular adverse events have been reported with parenteral E2, DES and EE. Encouraging effects on bone parameters have been obtained with transdermal E2 (tE2) and HDE4, in the tE2 development program (PATCH study), and in the LHRHa/HDE4 co-treatment study (PCombi), respectively. Confirmation of the beneficial effects of estrogen therapy with tE2 or HDE4 on bone health in patients with advanced PCa is needed, with special emphasis on bone mass and fracture rate.

Open access