Search Results

You are looking at 1 - 10 of 532 items for

  • Abstract: Aging x
  • Abstract: Autoimmune x
Clear All Modify Search
Ghazala Zaidi Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Ghazala Zaidi in
Google Scholar
PubMed
Close
,
Vijayalakshmi Bhatia Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Vijayalakshmi Bhatia in
Google Scholar
PubMed
Close
,
Saroj K Sahoo Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Saroj K Sahoo in
Google Scholar
PubMed
Close
,
Aditya Narayan Sarangi Departments of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Aditya Narayan Sarangi in
Google Scholar
PubMed
Close
,
Niharika Bharti Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Niharika Bharti in
Google Scholar
PubMed
Close
,
Li Zhang Department of Immunology, Barbara Davis Centre for Childhood Diabetes, Denver, USA

Search for other papers by Li Zhang in
Google Scholar
PubMed
Close
,
Liping Yu Department of Immunology, Barbara Davis Centre for Childhood Diabetes, Denver, USA

Search for other papers by Liping Yu in
Google Scholar
PubMed
Close
,
Daniel Eriksson Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Daniel Eriksson in
Google Scholar
PubMed
Close
,
Sophie Bensing Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Sophie Bensing in
Google Scholar
PubMed
Close
,
Olle Kämpe Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden

Search for other papers by Olle Kämpe in
Google Scholar
PubMed
Close
,
Nisha Bharani Department of Endocrinology, Amrita Institute of Medical Sciences, Kochi, India

Search for other papers by Nisha Bharani in
Google Scholar
PubMed
Close
,
Surendra Kumar Yachha Departments of Paediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Surendra Kumar Yachha in
Google Scholar
PubMed
Close
,
Anil Bhansali Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Search for other papers by Anil Bhansali in
Google Scholar
PubMed
Close
,
Alok Sachan Department of Endocrinology, Sri Venkateshwara Institute of Medical Sciences, Tirupathi, India

Search for other papers by Alok Sachan in
Google Scholar
PubMed
Close
,
Vandana Jain Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India

Search for other papers by Vandana Jain in
Google Scholar
PubMed
Close
,
Nalini Shah Department of Endocrinology, King Edward Memorial Hospital, Seth GS Medical College, Mumbai, India

Search for other papers by Nalini Shah in
Google Scholar
PubMed
Close
,
Rakesh Aggarwal Departments of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Rakesh Aggarwal in
Google Scholar
PubMed
Close
,
Amita Aggarwal Departments of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Amita Aggarwal in
Google Scholar
PubMed
Close
,
Muthuswamy Srinivasan Departments of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Muthuswamy Srinivasan in
Google Scholar
PubMed
Close
,
Sarita Agarwal Departments of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Sarita Agarwal in
Google Scholar
PubMed
Close
, and
Eesh Bhatia Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Eesh Bhatia in
Google Scholar
PubMed
Close

Objective

Autoimmune polyendocrine syndrome type 1 (APS1) is a rare autosomal recessive disorder characterized by progressive organ-specific autoimmunity. There is scant information on APS1 in ethnic groups other than European Caucasians. We studied clinical aspects and autoimmune regulator (AIRE) gene mutations in a cohort of Indian APS1 patients.

Design

Twenty-three patients (19 families) from six referral centres in India, diagnosed between 1996 and 2016, were followed for [median (range)] 4 (0.2–19) years.

Methods

Clinical features, mortality, organ-specific autoantibodies and AIRE gene mutations were studied.

Results

Patients varied widely in their age of presentation [3.5 (0.1–17) years] and number of clinical manifestations [5 (2–11)]. Despite genetic heterogeneity, the frequencies of the major APS1 components (mucocutaneous candidiasis: 96%; hypoparathyroidism: 91%; primary adrenal insufficiency: 55%) were similar to reports in European series. In contrast, primary hypothyroidism (23%) occurred more frequently and at an early age, while kerato-conjunctivitis, urticarial rash and autoimmune hepatitis were uncommon (9% each). Six (26%) patients died at a young age [5.8 (3–23) years] due to septicaemia, hepatic failure and adrenal/hypocalcaemic crisis from non-compliance/unexplained cause. Interferon-α and/or interleukin-22 antibodies were elevated in all 19 patients tested, including an asymptomatic infant. Eleven AIRE mutations were detected, the most common being p.C322fsX372 (haplotype frequency 37%). Four mutations were novel, while six others were previously described in European Caucasians.

Conclusions

Indian APS1 patients exhibited considerable genetic heterogeneity and had highly variable clinical features. While the frequency of major manifestations was similar to that of European Caucasians, other features showed significant differences. A high mortality at a young age was observed.

Open access
Lia Ferreira Department of Endocrinology, Centro Hospitalar do Porto, Porto, Portugal

Search for other papers by Lia Ferreira in
Google Scholar
PubMed
Close
,
João Silva Department of Endocrinology, Hospital das Forças Armadas, Lisboa, Portugal

Search for other papers by João Silva in
Google Scholar
PubMed
Close
,
Susana Garrido Department of Endocrinology, Centro Hospitalar Tâmega e Sousa, Porto, Portugal

Search for other papers by Susana Garrido in
Google Scholar
PubMed
Close
,
Carlos Bello Department of Endocrinology, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal

Search for other papers by Carlos Bello in
Google Scholar
PubMed
Close
,
Diana Oliveira Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal

Search for other papers by Diana Oliveira in
Google Scholar
PubMed
Close
,
Hélder Simões Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal

Search for other papers by Hélder Simões in
Google Scholar
PubMed
Close
,
Isabel Paiva Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal

Search for other papers by Isabel Paiva in
Google Scholar
PubMed
Close
,
Joana Guimarães Department of Endocrinology, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal

Search for other papers by Joana Guimarães in
Google Scholar
PubMed
Close
,
Marta Ferreira Department of Endocrinology, Centro Hospitalar de Leiria, Leiria, Portugal

Search for other papers by Marta Ferreira in
Google Scholar
PubMed
Close
,
Teresa Pereira Department of Endocrinology, Centro Hospitalar de Leiria, Leiria, Portugal

Search for other papers by Teresa Pereira in
Google Scholar
PubMed
Close
,
Rita Bettencourt-Silva Department of Endocrinology, Centro Hospitalar de São João, Porto, Portugal

Search for other papers by Rita Bettencourt-Silva in
Google Scholar
PubMed
Close
,
Ana Filipa Martins Department of Endocrinology, Centro Hospitalar Lisboa Norte, Lisboa, Portugal

Search for other papers by Ana Filipa Martins in
Google Scholar
PubMed
Close
,
Tiago Silva Department of Endocrinology, Hospital Garcia da Orta, Lisboa, Portugal

Search for other papers by Tiago Silva in
Google Scholar
PubMed
Close
,
Vera Fernandes Department of Endocrinology, Hospital de Braga, Braga, Portugal

Search for other papers by Vera Fernandes in
Google Scholar
PubMed
Close
,
Maria Lopes Pereira Department of Endocrinology, Hospital de Braga, Braga, Portugal

Search for other papers by Maria Lopes Pereira in
Google Scholar
PubMed
Close
, and
Adrenal Tumors Study Group of the Portuguese Society of Endocrinology Department of Endocrinology, Centro Hospitalar do Porto, Porto, Portugal

Search for other papers by Adrenal Tumors Study Group of the Portuguese Society of Endocrinology in
Google Scholar
PubMed
Close

Introduction

Primary adrenal insufficiency (PAI) is a rare but severe and potentially life-threatening condition. No previous studies have characterized Portuguese patients with PAI.

Aims

To characterize the clinical presentation, diagnostic workup, treatment and follow‐up of Portuguese patients with confirmed PAI.

Methods

This multicentre retrospective study examined PAI patients in 12 Portuguese hospitals.

Results

We investigated 278 patients with PAI (55.8% were females), with a mean age of 33.6 ± 19.3 years at diagnosis. The most frequent presenting clinical features were asthenia (60.1%), mucocutaneous hyperpigmentation (55.0%) and weight loss (43.2%); 29.1% of the patients presented with adrenal crisis. Diagnosis was established by high plasma ACTH and low serum cortisol in most patients (43.9%). The most common aetiology of PAI was autoimmune adrenalitis (61.0%). There were 38 idiopathic cases. Autoimmune comorbidities were found in 70% of the patients, the most frequent being autoimmune thyroiditis (60.7%) and type 1 diabetes mellitus (17.3%). Seventy-nine percent were treated with hydrocortisone (mean dose 26.3 ± 8.3 mg/day) mostly in three (57.5%) or two (37.4%) daily doses. The remaining patients were treated with prednisolone (10.1%), dexamethasone (6.2%) and methylprednisolone (0.7%); 66.2% were also on fludrocortisone (median dose of 100 µg/day). Since diagnosis, 33.5% of patients were hospitalized for disease decompensation. In the last appointment, 17.2% of patients had complaints (7.6% asthenia and 6.5% depression) and 9.7% had electrolyte disturbances.

Conclusion

This is the first multicentre Portuguese study regarding PAI. The results emphasize the need for standardization in diagnostic tests and etiological investigation and provide a framework for improving treatment.

Open access
Elinor Chelsom Vogt Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Close
,
Francisco Gómez Real Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway

Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
Close
,
Eystein Sverre Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Close
,
Sigridur Björnsdottir Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Close
,
Bryndis Benediktsdottir Medical Faculty, University of Iceland, Reykjavik, Iceland
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland

Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Close
,
Randi Jacobsen Bertelsen Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Close
,
Pascal Demoly University Hospital of Montpellier, IDESP, Univ Montpellier-Inserm, Montpellier, France

Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Close
,
Karl Anders Franklin Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden

Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Close
,
Leire Sainz de Aja Gallastegui Unit of Epidemiology and Public Health, Department of Health, Basque Government, Vitoria-Gasteiz, Spain

Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Close
,
Francisco Javier Callejas González Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Close
,
Joachim Heinrich Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Close
,
Mathias Holm Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Mathias Holm in
Google Scholar
PubMed
Close
,
Nils Oscar Jogi Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Close
,
Benedicte Leynaert Université Paris-Saclay, Inserm U1018, Center for Epidemiology and Population Health, Integrative Respiratory Epidemiology Team, Villejuif, France

Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Close
,
Eva Lindberg Department of Medical Sciences, Respiratory, Allergy and Sleep Medicine, Uppsala University, Uppsala, Sweden

Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Close
,
Andrei Malinovschi Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden

Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Close
,
Jesús Martínez-Moratalla Pneumology Service of the General University Hospital of Albacete, Albacete, Spain
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain

Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Close
,
Raúl Godoy Mayoral Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Close
,
Anna Oudin Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Search for other papers by Anna Oudin in
Google Scholar
PubMed
Close
,
Antonio Pereira-Vega Juan Ramón Jiménez University Hospital in Huelva, Huelva, Spain

Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Close
,
Chantal Raherison Semjen INSERM, EpiCene Team U1219, University of Bordeaux, Talence, France

Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
Close
,
Vivi Schlünssen Department of Public Health, Environment, Work and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
The National Research Center for the Working Environment, Copenhagen, Denmark

Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Close
,
Kai Triebner Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Kai Triebner in
Google Scholar
PubMed
Close
, and
Marianne Øksnes Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Close

Objective

To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.

Design

Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.

Methods

Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.

Results

Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.

Conclusion

Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.

Open access
Sriharsha Gunna Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Sriharsha Gunna in
Google Scholar
PubMed
Close
,
Mahaveer Singh Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Mahaveer Singh in
Google Scholar
PubMed
Close
,
Rakesh Pandey Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Rakesh Pandey in
Google Scholar
PubMed
Close
,
Rungmei S K Marak Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Rungmei S K Marak in
Google Scholar
PubMed
Close
,
Amita Aggarwal Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Amita Aggarwal in
Google Scholar
PubMed
Close
,
Bibhuti Mohanta Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Bibhuti Mohanta in
Google Scholar
PubMed
Close
,
Liping Yu Barbara Davis Centre for Diabetes, School of Medicine University of Colorado, Aurora, Colorado, USA

Search for other papers by Liping Yu in
Google Scholar
PubMed
Close
, and
Eesh Bhatia Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Eesh Bhatia in
Google Scholar
PubMed
Close

The etiology, presentation and mortality of patients with primary adrenal insufficiency (PAI) in developing countries may differ from economically developed nations. However, information in this regard is scanty. The aim of this study was to determine the etiology and compare the clinical characteristics and mortality in infectious and autoimmune causes of PAI in Indian patients. All eligible (n = 89) patients (ages 15–83 years) diagnosed with PAI between 2006 and 2019 were studied. Patients were followed for a median duration of 5.9 (range 0.1–15.7) years. Eighty-six subjects underwent an abdominal computerized tomography scan or ultrasonography, and adrenal biopsy was performed in 60 patients. The most frequent etiologies of PAI were adrenal histoplasmosis (AH, 45%), adrenal tuberculosis (AT, 15%), autoimmunity (AI, 25%) and primary lymphoma (6%). Forty-two percent of patients presented with an acute adrenal crisis. AH and AT could not be differentiated on the basis of clinical features, except for a greater frequency of hepatomegaly–splenomegaly and type 2 diabetes mellitus (63% vs 15%, P < 0.01) in the former. Patients with an autoimmune etiology had a higher frequency of 21-hydroxylase antibodies (41% vs 3%) and autoimmune thyroid disease (46% vs 5%) vs those with infectious etiologies. Mortality was significantly higher in AH (45%) compared with AT (8%) or AI (5%) (P = 0.001). Causes of death included adrenal crises, progressive AH and unexplained acute events occurring at home. In conclusion, infections, especially AH, were the most frequent cause of PAI in north India. Despite appropriate therapy, AH had very high mortality as compared with AT and AI.

Open access
Hauke Thomsen Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
Center for Primary Health Care Research, Lund University, Malmö, Sweden
GeneWerk GmbH, Heidelberg, Germany

Search for other papers by Hauke Thomsen in
Google Scholar
PubMed
Close
,
Xinjun Li Center for Primary Health Care Research, Lund University, Malmö, Sweden

Search for other papers by Xinjun Li in
Google Scholar
PubMed
Close
,
Kristina Sundquist Center for Primary Health Care Research, Lund University, Malmö, Sweden
Departments of Family Medicine and Community Health, Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan

Search for other papers by Kristina Sundquist in
Google Scholar
PubMed
Close
,
Jan Sundquist Center for Primary Health Care Research, Lund University, Malmö, Sweden
Departments of Family Medicine and Community Health, Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan

Search for other papers by Jan Sundquist in
Google Scholar
PubMed
Close
,
Asta Försti Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
Center for Primary Health Care Research, Lund University, Malmö, Sweden
Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany

Search for other papers by Asta Försti in
Google Scholar
PubMed
Close
, and
Kari Hemminki Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
Center for Primary Health Care Research, Lund University, Malmö, Sweden
Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic

Search for other papers by Kari Hemminki in
Google Scholar
PubMed
Close

Design

Addison’s disease (AD) is a rare autoimmune disease (AID) of the adrenal cortex, present as an isolated AD or part of autoimmune polyendocrine syndromes (APSs) 1 and 2. Although AD patients present with a number of AID co-morbidities, population-based family studies are scarce, and we aimed to carry out an unbiased study on AD and related AIDs.

Methods

We collected data on patients diagnosed with AIDs in Swedish hospitals and calculated standardized incidence ratios (SIRs) in families for concordant AD and for other AIDs, the latter as discordant relative risks.

Results

The number of AD patients was 2852, which accounted for 0.4% of all hospitalized AIDs. A total of 62 persons (3.6%) were diagnosed with familial AD. The SIR for siblings was remarkably high, reaching 909 for singleton siblings diagnosed before age 10 years. It was 32 in those diagnosed past age 29 years and the risk for twins was 323. SIR was 9.44 for offspring of affected parents. AD was associated with 11 other AIDs, including thyroid AIDs and type 1 diabetes and some rarer AIDs such as Guillain–Barre syndrome, myasthenia gravis, polymyalgia rheumatica and Sjögren’s syndrome.

Conclusions

The familial risk for AD was very high implicating genetic etiology, which for juvenile siblings may be ascribed to APS-1. The adult part of sibling risk was probably contributed by recessive polygenic inheritance. AD was associated with many common AIDs; some of these were known co-morbidities in AD patients while some other appeared to more specific for a familial setting.

Open access
Mírian Romitti Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Mírian Romitti in
Google Scholar
PubMed
Close
,
Vitor C Fabris Gynecological Endocrinology Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, and Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Vitor C Fabris in
Google Scholar
PubMed
Close
,
Patricia K Ziegelmann Postgraduate Program in Epidemiology and Department of Statistics, Institute of Mathematics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Patricia K Ziegelmann in
Google Scholar
PubMed
Close
,
Ana Luiza Maia Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Ana Luiza Maia in
Google Scholar
PubMed
Close
, and
Poli Mara Spritzer Gynecological Endocrinology Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, and Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Poli Mara Spritzer in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder affecting women of reproductive age. PCOS has been associated with distinct metabolic and cardiovascular diseases and with autoimmune conditions, predominantly autoimmune thyroid disease (AITD). AITD has been reported in 18–40% of PCOS women, depending on PCOS diagnostic criteria and ethnicity. The aim of this systematic review and meta-analysis was to summarize the available evidence regarding the likelihood of women with PCOS also having AITD in comparison to a reference group of non-PCOS women. We systematically searched EMBASE and MEDLINE for non-interventional case control, cross-sectional or cohort studies published until August 2017. The Ottawa–Newcastle Scale was used to assess the methodological quality of studies. Statistical meta-analysis was performed with R. Thirteen studies were selected for the present analysis, including 1210 women diagnosed with PCOS and 987 healthy controls. AITD was observed in 26.03 and 9.72% of PCOS and control groups respectively. A significant association was detected between PCOS and chance of AITD (OR = 3.27, 95% CI 2.32–4.63). Notably, after geographical stratification, the higher risk of AITD in PCOS women persisted for Asians (OR = 4.56, 95% CI 2.47–8.43), Europeans (OR = 3.27, 95% CI 2.07–5.15) and South Americans (OR = 1.86, 95% CI 1.05–3.29). AIDT is a frequent condition in PCOS patients and might affect thyroid function. Thus, screening for thyroid function and thyroid-specific autoantibodies should be considered in patients with PCOS even in the absence of overt symptoms. This systematic review and meta-analysis is registered in PROSPERO under number CRD42017079676.

Open access
Elin Kahlert Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Elin Kahlert in
Google Scholar
PubMed
Close
,
Martina Blaschke Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
Endokrinologikum Goettingen, Goettingen, Germany

Search for other papers by Martina Blaschke in
Google Scholar
PubMed
Close
,
Knut Brockmann Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Knut Brockmann in
Google Scholar
PubMed
Close
,
Clemens Freiberg Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Clemens Freiberg in
Google Scholar
PubMed
Close
,
Onno E Janssen Endokrinologikum Hamburg, Hamburg, Germany

Search for other papers by Onno E Janssen in
Google Scholar
PubMed
Close
,
Nikolaus Stahnke Endokrinologikum Hamburg, Hamburg, Germany

Search for other papers by Nikolaus Stahnke in
Google Scholar
PubMed
Close
,
Domenika Strik Endokrinologikum Berlin, Berlin, Germany

Search for other papers by Domenika Strik in
Google Scholar
PubMed
Close
,
Martin Merkel Endokrinologikum Hannover, Hannover, Germany

Search for other papers by Martin Merkel in
Google Scholar
PubMed
Close
,
Alexander Mann Endokrinologikum Frankfurt, Frankfurt/Main, Germany

Search for other papers by Alexander Mann in
Google Scholar
PubMed
Close
,
Klaus-Peter Liesenkötter Endokrinologikum Berlin, Berlin, Germany

Search for other papers by Klaus-Peter Liesenkötter in
Google Scholar
PubMed
Close
, and
Heide Siggelkow Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
Endokrinologikum Goettingen, Goettingen, Germany

Search for other papers by Heide Siggelkow in
Google Scholar
PubMed
Close

Objective

Turner syndrome (TS) is characterized by the complete or partial loss of the second sex chromosome and associated with a wide range of clinical manifestations. We aimed to assess the medical care of adult patients with TS in Germany.

Design

Retrospective multicenter observational study.

Methods

Data were collected from medical records of 258 women with TS treated between 2001 and 2017 in five non-university endocrinologic centers in Germany.

Results

Mean age was 29.8 ± 11.6 years, mean height 152 ± 7.7 cm, and mean BMI 26.6 ± 6.3 kg/m2. The karyotype was known in 50% of patients. Information on cholesterol state, liver enzymes, and thyroid status was available in 81–98% of women with TS; autoimmune thyroiditis was diagnosed in 37%. Echocardiography was performed in 42% and cardiac MRI in 8.5%, resulting in a diagnosis of cardiovascular disorder in 28%. Data on growth hormone therapy were available for 40 patients (15%) and data concerning menarche in 157 patients (61%).

Conclusion

In 258 women with TS, retrospective analysis of healthcare data indicated that medical management was focused on endocrine manifestations. Further significant clinical features including cardiovascular disease, renal malformation, liver involvement, autoimmune diseases, hearing loss, and osteoporosis were only marginally if at all considered. Based on this evaluation and in accordance with recent guidelines, we compiled a documentation form facilitating the transition from pediatric to adult care and further medical management of TS patients. The foundation of Turner Centers in March 2019 will improve the treatment of TS women in Germany.

Open access
John E M Midgley
Search for other papers by John E M Midgley in
Google Scholar
PubMed
Close
,
Rolf Larisch North Lakes Clinical, Department of Nuclear Medicine, Medical Department I, Ruhr Center for Rare Diseases (CeSER), 20 Wheatley Avenue, Ilkley LS29 8PT, UK

Search for other papers by Rolf Larisch in
Google Scholar
PubMed
Close
,
Johannes W Dietrich North Lakes Clinical, Department of Nuclear Medicine, Medical Department I, Ruhr Center for Rare Diseases (CeSER), 20 Wheatley Avenue, Ilkley LS29 8PT, UK
North Lakes Clinical, Department of Nuclear Medicine, Medical Department I, Ruhr Center for Rare Diseases (CeSER), 20 Wheatley Avenue, Ilkley LS29 8PT, UK

Search for other papers by Johannes W Dietrich in
Google Scholar
PubMed
Close
, and
Rudolf Hoermann North Lakes Clinical, Department of Nuclear Medicine, Medical Department I, Ruhr Center for Rare Diseases (CeSER), 20 Wheatley Avenue, Ilkley LS29 8PT, UK

Search for other papers by Rudolf Hoermann in
Google Scholar
PubMed
Close

Several influences modulate biochemical responses to a weight-adjusted levothyroxine (l-T4) replacement dose. We conducted a secondary analysis of the relationship of l-T4 dose to TSH and free T3 (FT3), using a prospective observational study examining the interacting equilibria between thyroid parameters. We studied 353 patients on steady-state l-T4 replacement for autoimmune thyroiditis or after surgery for malignant or benign thyroid disease. Peripheral deiodinase activity was calculated as a measure of T4–T3 conversion efficiency. In euthyroid subjects, the median l-T4 dose was 1.3 μg/kg per day (interquartile range (IQR) 0.94,1.60). The dose was independently associated with gender, age, aetiology and deiodinase activity (all P<0.001). Comparable FT3 levels required higher l-T4 doses in the carcinoma group (n=143), even after adjusting for different TSH levels. Euthyroid athyreotic thyroid carcinoma patients (n=50) received 1.57 μg/kg per day l-T4 (IQR 1.40, 1.69), compared to 1.19 μg/kg per day (0.85,1.47) in autoimmune thyroiditis (P<0.01, n=76) and 1.08 μg/kg per day (0.82, 1.44) in patients operated on for benign disease (P< 0.01, n=80). Stratifying patients by deiodinase activity categories of <23, 23–29 and >29 nmol/s revealed an increasing FT3–FT4 dissociation; the poorest converters showed the lowest FT3 levels in spite of the highest dose and circulating FT4 (P<0.001). An l-T4-related FT3–TSH disjoint was also apparent; some patients with fully suppressed TSH failed to raise FT3 above the median level. These findings imply that thyroid hormone conversion efficiency is an important modulator of the biochemical response to l-T4; FT3 measurement may be an additional treatment target; and l-T4 dose escalation may have limited success to raise FT3 appropriately in some cases.

Open access
Zhengrong Jiang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Zhengrong Jiang in
Google Scholar
PubMed
Close
,
Linghong Huang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Linghong Huang in
Google Scholar
PubMed
Close
,
Lijun Chen Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Lijun Chen in
Google Scholar
PubMed
Close
,
Jingxiong Zhou Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Jingxiong Zhou in
Google Scholar
PubMed
Close
,
Bo Liang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Bo Liang in
Google Scholar
PubMed
Close
,
Xuefeng Bai Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Xuefeng Bai in
Google Scholar
PubMed
Close
,
Lizhen Wu Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Lizhen Wu in
Google Scholar
PubMed
Close
, and
Huibin Huang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Huibin Huang in
Google Scholar
PubMed
Close

Background

Graves’ disease is a common autoimmune disease. Cytokines and their signalling pathways play a major part in the pathogenesis of Graves’ disease; however, the underlying mechanism needs to be clarified.

Aims

The aim of this study was to explore whether circular RNAs participate in the immunological pathology of Graves’ disease via cytokine-related signalling pathways.

Methods

Bioinformatics analysis was performed to identify differentially expressed circular RNAs and their targets and associated pathways. A total of three patients with Graves’ disease and three sex- and age-matched healthy controls were enrolled for validation with microarray analysis and real-time quantitative PCR (qPCR). An additional 24 patients with Graves’ disease and 24 gender- and age-matched controls were included for validation by real-time fluorescent qPCR. Flow cytometry and CCK8 assays were used to detect the apoptotic and proliferative levels of Jurkat cells (T lymphocytes) with the silenced expression of circRNA. ELISA was performed to detect the growth and apoptosis-related proteins. The competition mechanism of endogenous RNA was explored by real-time fluorescence qPCR.

Results

A total of 366 significantly differentially expressed circular RNAs were identified in the Graves’ disease group compared to healthy controls. The level of hsa_circ_0090364 was elevated in Graves’ disease patients and positively correlated with thyroid-stimulating hormone receptor antibodies. Further analyses suggested that hsa_circ_0090364 may regulate the JAK-STAT pathway via the hsa-miR-378a-3p/IL-6ST/IL21R axis to promote cell growth.

Conclusions

These results provide novel clues into the pathophysiological mechanisms of Graves’ disease and potential targets for drug treatment.

Open access
Suvanjaa Sivalingam Department of Internal Medicine, Hospital of Southern Jutland, Sønderborg, Denmark

Search for other papers by Suvanjaa Sivalingam in
Google Scholar
PubMed
Close
,
Marianne Thvilum Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark

Search for other papers by Marianne Thvilum in
Google Scholar
PubMed
Close
,
Thomas Heiberg Brix Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark

Search for other papers by Thomas Heiberg Brix in
Google Scholar
PubMed
Close
,
Laszlo Hegedüs Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark
Department of Clinical Research, University of Southern Denmark, Odense M, Denmark

Search for other papers by Laszlo Hegedüs in
Google Scholar
PubMed
Close
, and
Frans Brandt Department of Internal Medicine, Hospital of Southern Jutland, Sønderborg, Denmark
Department of Regional Health Research, University of Southern Denmark, Odense M, Denmark

Search for other papers by Frans Brandt in
Google Scholar
PubMed
Close

Background

Season of birth, an exogenous indicator of early life environment, has been linked with a higher risk of adverse health outcomes such as autoimmune thyroiditis, multiple sclerosis and schizophrenia later in life. Whether the development and cause of hyperthyroidism is influenced by season of birth is unclarified. We aimed, at a nationwide level, to investigate whether season of birth influences the risk of hyperthyroidism due to Graves’ disease (GD) and/or toxic nodular goitre (TNG).

Method

Register-based nationwide cohort study. By record-linkage between Danish health registers, 36,087 and 20,537 patients with GD and TNG, respectively, were identified. Each case was matched with four controls without thyroid disease, according to age and sex. Differences in month of birth across the year were evaluated by the Walter–Elwood test. Hazard ratios, for the risk of GD and TNG in individuals born in a certain month or season of the year, were calculated using Cox regression models.

Results

Neither for GD nor for TNG could we demonstrate a significant difference in birth rate across months or seasons of the year (Walter–Elwood’s test; X2 = 5.92 and X2 = 1.27, P = 0.052 and P = 0.53, respectively).

Conclusion

Irrespective of its cause, our findings do not support the hypothesis that season of birth is significantly related to the development of hyperthyroidism.

Open access