Search Results
Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
The purpose of androgen deprivation therapy (ADT) in prostate cancer (PCa), using luteinizing hormone-releasing hormone agonists (LHRHa) or gonadotrophin-releasing hormone antagonists, is to suppress the levels of testosterone. Since testosterone is the precursor of estradiol (E2), one of the major undesired effects of ADT is the concomitant loss of E2, causing among others an increased bone turnover and bone loss and an increased risk of osteoporosis and fractures. Therefore, the guidelines for ADT indicate to combine ADT routinely with bone-sparing agents such as bisphosphonates, denosumab or selective estrogen receptor modulators. However, these compounds may have side effects and some require inconvenient parenteral administration. Co-treatment with estrogens is an alternative approach to prevent bone loss and at the same time, to avoid other side effects caused by the loss of estrogens, which is the topic explored in the present narrative review. Estrogens investigated in PCa patients include parenteral or transdermal E2, diethylstilbestrol (DES), and ethinylestradiol (EE) as monotherapy, or high-dose estetrol (HDE4) combined with ADT. Cardiovascular adverse events have been reported with parenteral E2, DES and EE. Encouraging effects on bone parameters have been obtained with transdermal E2 (tE2) and HDE4, in the tE2 development program (PATCH study), and in the LHRHa/HDE4 co-treatment study (PCombi), respectively. Confirmation of the beneficial effects of estrogen therapy with tE2 or HDE4 on bone health in patients with advanced PCa is needed, with special emphasis on bone mass and fracture rate.
Search for other papers by E Vignali in
Google Scholar
PubMed
Search for other papers by F Cetani in
Google Scholar
PubMed
Search for other papers by S Chiavistelli in
Google Scholar
PubMed
Search for other papers by A Meola in
Google Scholar
PubMed
Search for other papers by F Saponaro in
Google Scholar
PubMed
Search for other papers by R Centoni in
Google Scholar
PubMed
Search for other papers by L Cianferotti in
Google Scholar
PubMed
Endocrine Unit 2, Department of Clinical and Experimental Medicine, Laboratory of Chemistry and Endocrinology, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
Search for other papers by C Marcocci in
Google Scholar
PubMed
We investigated the prevalence of normocalcemic primary hyperparathyroidism (NPHPT) in the adult population living in a village in Southern Italy. All residents in 2010 (n=2045) were invited by calls and 1046 individuals accepted to participate. Medical history, calcium intake, calcium, albumin, creatinine, parathyroid hormone (PTH) and 25OHD were evaluated. NPHPT was defined by normal albumin-adjusted serum calcium, elevated plasma PTH, and exclusion of common causes of secondary hyperparathyroidism (SHPT) (serum 25OHD <30 ng/ml, estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2 and thiazide diuretics use), overt gastrointestinal and metabolic bone diseases. Complete data were available for 685 of 1046 subjects. Twenty subjects did not meet the inclusion criteria and 341 could not be evaluated because of thawing of plasma samples. Classical PHPT was diagnosed in four women (0.58%). For diagnosing NPHPT the upper normal limit of PTH was established in the sample of the population (n=100) who had 25OHD ≥30 ng/ml and eGFR ≥60 ml/min per 1.73 m2 and was set at the mean+3s.d. Three males (0.44%) met the diagnostic criteria of NPHPT. These subjects were younger and with lower BMI than those with classical PHPT. Our data suggest, in line with previous studies, that NPHPT might be a distinct clinical entity, being either an early phenotype of asymptomatic PHPT or a distinct variant of it. However, we cannot exclude that NPHPT might also represent an early phase of non-classical SHPT, since other variables, in addition to those currently taken into account for the diagnosis of NPHPT, might cumulate in a normocalcemic subject to increase PTH secretion.
Search for other papers by Kaisa K Ivaska in
Google Scholar
PubMed
Search for other papers by Maikki K Heliövaara in
Google Scholar
PubMed
Search for other papers by Pertti Ebeling in
Google Scholar
PubMed
Search for other papers by Marco Bucci in
Google Scholar
PubMed
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Search for other papers by Ville Huovinen in
Google Scholar
PubMed
Search for other papers by H Kalervo Väänänen in
Google Scholar
PubMed
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Search for other papers by Pirjo Nuutila in
Google Scholar
PubMed
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Search for other papers by Heikki A Koistinen in
Google Scholar
PubMed
Insulin signaling in bone-forming osteoblasts stimulates bone formation and promotes the release of osteocalcin (OC) in mice. Only a few studies have assessed the direct effect of insulin on bone metabolism in humans. Here, we studied markers of bone metabolism in response to acute hyperinsulinemia in men and women. Thirty-three subjects from three separate cohorts (n=8, n=12 and n=13) participated in a euglycaemic hyperinsulinemic clamp study. Blood samples were collected before and at the end of infusions to determine the markers of bone formation (PINP, total OC, uncarboxylated form of OC (ucOC)) and resorption (CTX, TRAcP5b). During 4 h insulin infusion (40 mU/m2 per min, low insulin), CTX level decreased by 11% (P<0.05). High insulin infusion rate (72 mU/m2 per min) for 4 h resulted in more pronounced decrease (−32%, P<0.01) whereas shorter insulin exposure (40 mU/m2 per min for 2 h) had no effect (P=0.61). Markers of osteoblast activity remained unchanged during 4 h insulin, but the ratio of uncarboxylated-to-total OC decreased in response to insulin (P<0.05 and P<0.01 for low and high insulin for 4 h respectively). During 2 h low insulin infusion, both total OC and ucOC decreased significantly (P<0.01 for both). In conclusion, insulin decreases bone resorption and circulating levels of total OC and ucOC. Insulin has direct effects on bone metabolism in humans and changes in the circulating levels of bone markers can be seen within a few hours after administration of insulin.
Department of Endocrinology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Unni Syversen in
Google Scholar
PubMed
Medical Clinic, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Mats Peder Mosti in
Google Scholar
PubMed
Search for other papers by Ida Maria Mynarek in
Google Scholar
PubMed
Search for other papers by Trude Seselie Jahr Vedal in
Google Scholar
PubMed
Department of Gastroenterology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Kristin Aasarød in
Google Scholar
PubMed
Search for other papers by Trude Basso in
Google Scholar
PubMed
Search for other papers by Janne E Reseland in
Google Scholar
PubMed
Search for other papers by Per Medbøe Thorsby in
Google Scholar
PubMed
K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Trondheim, Norway
Search for other papers by Bjorn O Asvold in
Google Scholar
PubMed
Search for other papers by Erik Fink Eriksen in
Google Scholar
PubMed
Medical Clinic, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Astrid Kamilla Stunes in
Google Scholar
PubMed
Objective
Type 1 diabetes (T1D) is associated with substantial fracture risk. Bone mineral density (BMD) is, however, only modestly reduced, suggesting impaired bone microarchitecture and/or bone material properties. Yet, the skeletal abnormalities have not been uncovered. Men with T1D seem to experience a more pronounced bone loss than their female counterparts. Hence, we aimed to examine different aspects of bone quality in men with T1D.
Design and Methods
In this cross-sectional study, men with T1D and healthy male controls were enrolled. BMD (femoral neck, total hip, lumbar spine, whole body) and spine trabecular bone score (TBS) were measured by dual x-ray absorptiometry, and bone material strength index (BMSi) was measured by in vivo impact microindentation. HbA1c and bone turnover markers were analyzed.
Results
Altogether, 33 men with T1D (43 ± 12 years) and 28 healthy male controls (42 ± 12 years) were included. Subjects with T1D exhibited lower whole-body BMD than controls (P = 0.04). TBS and BMSi were attenuated in men with T1D vs controls (P = 0.016 and P = 0.004, respectively), and T1D subjects also had a lower bone turnover. The bone parameters did not differ between subjects with or without diabetic complications. Duration of disease correlated negatively with femoral neck BMD but not with TBS or BMSi.
Conclusions
This study revealed compromised bone material strength and microarchitecture in men with T1D. Moreover, our data confirm previous studies which found a modest decrease in BMD and low bone turnover in subjects with T1D. Accordingly, bone should be recognized as a target of diabetic complications.
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Xiaoxia Jia in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yaxin An in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yuechao Xu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yuxian Yang in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Chang Liu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Dong Zhao in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Jing Ke in
Google Scholar
PubMed
Background
Obesity is known as a common risk factor for osteoporosis and type 2 diabetes mellitus (T2DM). Perirenal fat, surrounding the kidneys, has been reported to be unique in anatomy and biological functions. This study aimed to explore the relationship between perirenal fat and bone metabolism in patients with T2DM.
Methods
A total of 234 patients with T2DM were recruited from September 2019 to December 2019 in the cross-sectional study. The biochemical parameters and bone turnover markers (BTMs) were determined in all participants. Perirenal fat thickness (PrFT) was performed by ultrasounds via a duplex Doppler apparatus. Associations between PrFT and bone metabolism index were determined via correlation analysis and regression models.
Results
The PrFT was significantly correlated with β-C-terminal telopeptides of type I collagen (β-CTX) (r = −0.14, P < 0.036), parathyroid hormone (iPTH) (r = −0.18, P ≤ 0.006), and 25 hydroxyvitamin D (25-OH-D) (r = −0.14, P = 0.001). Multivariate analysis confirmed that the association of PrFT and β-CTX (β = −0.136, P = 0.042) was independent of other variables.
Conclusion
This study showed a negative and independent association between PrFT and β-CTX in subjects with T2DM, suggesting a possible role of PrFT in bone metabolism. Follow-up studies and further research are necessary to validate the associations and to elucidate the underlying mechanisms.
Search for other papers by Elena Valassi in
Google Scholar
PubMed
Search for other papers by Natalia García-Giralt in
Google Scholar
PubMed
Search for other papers by Jorge Malouf in
Google Scholar
PubMed
Search for other papers by Iris Crespo in
Google Scholar
PubMed
Search for other papers by Jaume Llauger in
Google Scholar
PubMed
Search for other papers by Adolfo Díez-Pérez in
Google Scholar
PubMed
Search for other papers by Susan M Webb in
Google Scholar
PubMed
Background
Biochemical control of GH/IGF-I excess in acromegaly (ACRO) is associated with persistent impairment of trabecular microstructure leading to increased risk of vertebral fractures. Circulating miRNAs modulate the activity of osteoblasts and osteoclasts, and may be potential biomarkers of osteoporosis.
Aims
Identify differentially expressed miRNAs in the serum of patients with controlled ACRO vs controls and correlate miRNA levels with both biochemical and structural bone parameters.
Patients and methods
Twenty-seven patients with controlled ACRO (11 males, 16 females; mean age, 48 ± 5 years; BMI, 28 ± 4 kg/m2) and 27 age-, gender- and BMI-matched controls were recruited. Areal BMD at lumbar spine and femur, and trabecular bone score were assessed; volumetric BMD was measured by quantitative computed tomography QCT-Pro (Mindways). Twenty miRNAs, chosen by their putative role in bone, were quantified in serum using real-time qPCR.
Results
In ACRO patients, miR-103a-3p and miR-191-5p were found overexpressed, whereas miR-660-5p was underexpressed (P < 0.001). miR-103a-3p levels were negatively associated with both trabecular vBMD at trochanter and serum osteoprotegerin concentrations (P < 0.05) and positively with vitamin D concentrations (P < 0.01) and total cross-sectional area of the femoral neck (P < 0.05). miR-660-5p levels were correlated with both trabecular vBMD at trochanter and OPG concentrations (P < 0.05), but were negatively associated with vitamin D levels (P < 0.05). A negative correlation between miR-103-a-3p and miR-660-5p was found in both groups (P < 0.001).
Conclusions
Circulating miR-103a-3p and miR-660-5p are differentially expressed in controlled ACRO patients and associated with bone structural parameters. miRNAs may be one of the mechanisms involved in the pathogenesis of bone disease and could be used as biomarkers in ACRO patients.
Search for other papers by Eva Novoa in
Google Scholar
PubMed
Search for other papers by Marcel Gärtner in
Google Scholar
PubMed
Search for other papers by Christoph Henzen in
Google Scholar
PubMed
Objective
The study aimed to assess the possible systemic effects of intratympanic dexamethasone (IT-Dex) on the hypothalamic–pituitary–adrenal (HPA) axis, inflammation, and bone metabolism.
Design
A prospective cohort study including 30 adult patients of a tertiary referral ENT clinic treated with 9.6 mg IT-Dex over a period of 10 days was carried out.
Methods
Effects on plasma and salivary cortisol concentrations (basal and after low-dose (1 μg) ACTH stimulation), peripheral white blood cell count, and biomarkers for bone turnover were measured before (day 0) and after IT-Dex (day 16). Additional measurements for bone turnover were performed 5 months after therapy. Clinical information and medication with possible dexamethasone interaction were recorded.
Results
IT-Dex was well tolerated, and no effect was detected on the HPA axis (stimulated plasma and salivary cortisol concentration on day 0: 758±184 and 44.5±22.0 nmol/l; day 16: 718±154 and 39.8±12.4 nmol/l; P=0.58 and 0.24 respectively). Concentrations of osteocalcin (OC) and bone-specific alkaline phosphatase (BSAP) did not differ after dexamethasone (OC on days 0 and 16 respectively: 24.1±10.5 and 23.6±8.8 μg/l; BSAP on day 0, 16, and after 5 months respectively: 11.5±4.2, 10.3±3.4, and 12.6±5.06 μg/l); similarly, there was no difference in the peripheral white blood cell count (5.7×1012/l and 6.1×1012/l on days 0 and 16 respectively).
Conclusions
IT-Dex therapy did not interfere with endogenous cortisol secretion or bone metabolism.
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Search for other papers by Anke Hannemann in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Maria Winzer in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Ulrike Baschant in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Heike Weidner in
Google Scholar
PubMed
Search for other papers by Matthias Nauck in
Google Scholar
PubMed
Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
Search for other papers by Martin Bornhäuser in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
Search for other papers by Lorenz C Hofbauer in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Martina Rauner in
Google Scholar
PubMed
Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (−40%, P < 0.01 and −26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans.
Search for other papers by I M.a.a. van Roessel in
Google Scholar
PubMed
Search for other papers by Je Gorter in
Google Scholar
PubMed
Search for other papers by Boudewijn Bakker in
Google Scholar
PubMed
Search for other papers by Mm van den Heuvel-Eibrink in
Google Scholar
PubMed
Search for other papers by M H Lequin in
Google Scholar
PubMed
Search for other papers by J van der Lugt in
Google Scholar
PubMed
Search for other papers by L Meijer in
Google Scholar
PubMed
Search for other papers by A.y.n. Schouten-van Meeteren in
Google Scholar
PubMed
Search for other papers by H M van Santen in
Google Scholar
PubMed
Objective: Children with a supratentorial midline low grade glioma (LGG) may be at risk for impaired bone health due to hypothalamic-pituitary dysfunction, obesity, exposure to multiple treatment modalities, and/or decreased mobility. The presence of impaired bone health and/or its severity in this population has been understudied. We aimed to identify the prevalence and risk factors for bone problems in children with supratentorial midline LGG.
Design and Methods: A retrospective study was performed in children with supratentorial midline (suprasellar or thalamic) LGG between 1-1-2003 and 1-1-2022, visiting the Princess Máxima Center for Pediatric Oncology. Impaired bone health was defined as presence of vertebral fractures and/or very low bone mineral density (BMD).
Results: In total, 161 children were included, with a median age at tumor diagnosis of 4.7 years (range 0.1 – 17.9) and a median follow-up of 6.1 years (range 0.1 – 19.9). Five patients (3.1 %) had vertebral fractures. In 99 patients BMD was assessed either by Dual Energy X ray Absorptiometry (n=12) or Bone Health Index (n=95); 34 patients (34.3%) had a low BMD (≤ -2.0). Impaired visual capacity was associated with bone problems in multivariable analysis (OR 6.63, 95% CI 1.83 – 24.00, p = 0.004).
Conclusions: In this retrospective evaluation, decreased BMD was prevalent in 34.3% of children with supratentorial midline LGG. For the risk to develop bone problems visual capacity seems highly relevant. Surveillance of bone health must be an aspect for awareness in the care and follow-up of children with a supratentorial midline LGG.
Search for other papers by Maria Stelmachowska-Banaś in
Google Scholar
PubMed
Search for other papers by Izabella Czajka-Oraniec in
Google Scholar
PubMed
Immune checkpoint inhibitors (ICIs) belong to a new group of anticancer drugs targeting T-cell proteins involved in the activation of immune response toward malignancies. Their introduction into clinical practice was a milestone in modern cancer treatment. However, the significant advantage of ICIs over conventional chemotherapy in terms of therapeutic efficacy is accompanied by new challenges related to specific side effects. ICI-induced immune system activation could lead to the loss of self-tolerance, presenting as autoimmune inflammation and dysfunction of various tissues and organs. Thus, the typical side effects of ICIs include immune-related adverse events (irAEs), among which endocrine irAEs, affecting numerous endocrine glands, have been commonly recognized. This review aimed to outline the current knowledge regarding ICI-induced endocrine disorders from a clinical perspective. We present updated information on the incidence and clinical development of ICI-induced endocrinopathies, including the most frequent thyroiditis and hypophysitis, the rarely observed insulin-dependent diabetes mellitus and primary adrenal insufficiency, and the recently described cases of hypoparathyroidism and lipodystrophy. Practical guidelines for monitoring, diagnosis, and treatment of ICI-related endocrine toxicities are also offered. Rising awareness of endocrine irAEs among oncologists, endocrinologists, and other health professionals caring for patients receiving ICIs could contribute to better safety and efficacy. As immunotherapy becomes widespread and approved for new types of malignancies, increased incidences of endocrine irAEs are expected in the future.