Search Results
Search for other papers by Veronica Kieffer in
Google Scholar
PubMed
Search for other papers by Kate Davies in
Google Scholar
PubMed
Search for other papers by Christine Gibson in
Google Scholar
PubMed
Search for other papers by Morag Middleton in
Google Scholar
PubMed
Search for other papers by Jean Munday in
Google Scholar
PubMed
Search for other papers by Shashana Shalet in
Google Scholar
PubMed
Search for other papers by Lisa Shepherd in
Google Scholar
PubMed
Search for other papers by Phillip Yeoh in
Google Scholar
PubMed
This competency framework was developed by a working group of endocrine specialist nurses with the support of the Society for Endocrinology to enhance the clinical care that adults with an endocrine disorder receive. Nurses should be able to demonstrate that they are functioning at an optimal level in order for patients to receive appropriate care. By formulating a competency framework from which an adult endocrine nurse specialist can work, it is envisaged that their development as professional practitioners can be enhanced. This is the second edition of the Competency Framework for Adult Endocrine Nursing. It introduces four new competencies on benign adrenal tumours, hypo- and hyperparathyroidism, osteoporosis and polycystic ovary syndrome. The authors and the Society for Endocrinology welcome constructive feedback on the document, both nationally and internationally, in anticipation that further developments and ideas can be incorporated into future versions.
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Search for other papers by Marianne C Astor in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Search for other papers by Anette S B Wolff in
Google Scholar
PubMed
Search for other papers by Bjørn Nedrebø in
Google Scholar
PubMed
Search for other papers by Eirik Bratland in
Google Scholar
PubMed
Search for other papers by Jon Steen-Johnsen in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Primary hypomagnesemia with secondary hypocalcemia (HSH) is an autosomal recessive disorder characterized by neuromuscular symptoms in infancy due to extremely low levels of serum magnesium and moderate to severe hypocalcemia. Homozygous mutations in the magnesium transporter gene transient receptor potential cation channel member 6 (TRPM6) cause the disease. HSH can be misdiagnosed as primary hypoparathyroidism. The aim of this study was to describe the genetic, clinical and biochemical features of patients clinically diagnosed with HSH in a Norwegian cohort. Five patients in four families with clinical features of HSH were identified, including one during a national survey of hypoparathyroidism. The clinical history of the patients and their families were reviewed and gene analyses of TRPM6 performed. Four of five patients presented with generalized seizures in infancy and extremely low levels of serum magnesium accompanied by moderate hypocalcemia. Two of the patients had an older sibling who died in infancy. Four novel mutations and one large deletion in TRPM6 were identified. In one patient two linked homozygous mutations were located in exon 22 (p.F978L) and exon 23 (p.G1042V). Two families had an identical mutation in exon 25 (p.E1155X). The fourth patient had a missense mutation in exon 4 (p.H61N) combined with a large deletion in the C-terminal end of the gene. HSH is a potentially lethal condition that can be misdiagnosed as primary hypoparathyroidism. The diagnosis is easily made if serum magnesium is measured. When treated appropriately with high doses of oral magnesium supplementation, severe hypomagnesemia is uncommon and the long-term prognosis seems to be good.
Search for other papers by Katherine U Gaynor in
Google Scholar
PubMed
Search for other papers by Irina V Grigorieva in
Google Scholar
PubMed
Search for other papers by Samantha M Mirczuk in
Google Scholar
PubMed
Search for other papers by Sian E Piret in
Google Scholar
PubMed
Search for other papers by Kreepa G Kooblall in
Google Scholar
PubMed
Search for other papers by Mark Stevenson in
Google Scholar
PubMed
Search for other papers by Karine Rizzoti in
Google Scholar
PubMed
Search for other papers by Michael R Bowl in
Google Scholar
PubMed
Search for other papers by M Andrew Nesbit in
Google Scholar
PubMed
Search for other papers by Paul T Christie in
Google Scholar
PubMed
Search for other papers by William D Fraser in
Google Scholar
PubMed
Search for other papers by Tertius Hough in
Google Scholar
PubMed
Search for other papers by Michael P Whyte in
Google Scholar
PubMed
Search for other papers by Robin Lovell-Badge in
Google Scholar
PubMed
Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, which could alter SOX3 expression. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from three affected males, three unaffected males, and four carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3 −/Y and uc482 −/Y) and female heterozygous (Sox3 +/ − and uc482 +/ −) knockout mice, together with wild-type littermates (male Sox3 +/Y and uc482 +/Y, and female Sox3 +/+ and uc482 +/+), revealed Sox3 −/Y, Sox3 +/ −, uc482 −/Y, and uc482 +/ − mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3 −/Y, Sox3 +/ −, uc482 −/Y, and uc482 +/ − mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism and that XLHPT likely reflects a more complex mechanism.
Search for other papers by Souad Daamouch in
Google Scholar
PubMed
Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Search for other papers by Lorenz Hofbauer in
Google Scholar
PubMed
Search for other papers by Martina Rauner in
Google Scholar
PubMed
The link between obesity and low bone strength has become a significant medical concern. The canonical Wnt signaling pathway is a key regulator of mesenchymal stem cell differentiation into either osteoblasts or adipocytes with active Wnt signaling promoting osteoblastogenesis. Our previous research indicated that Dickkopf-1 (Dkk1), a Wnt inhibitor, is upregulated in bone tissue in obesity and that osteoblast-derived Dkk1 drives obesity-induced bone loss. However, Dkk1 is also produced by adipocytes, but the impact of adipogenic Dkk1 on bone remodeling and its role in obesity-induced bone loss remain unclear. Thus, in this study, we investigated the influence of adipogenic Dkk1 on bone homeostasis and obesity-induced bone loss in mice. To that end, deletion of Dkk1 in adipocytes was induced by tamoxifen administration into 8-week-old male Dkk1fl/fl;AdipoQcreERT2 mice. Bone and fat mass were analyzed at 12 and 20 weeks of age. Obesity was induced in 8-week-old male Dkk1fl/fl;AdipoQcre mice with a high-fat diet (HFD) rich in saturated fats for 12 weeks. We observed that 12-week-old male mice without adipogenic Dkk1 had a significant increase in trabecular bone volume in the vertebrae and femoral bones. While histological and serological bone formation markers were not different, the number of osteoclasts and adipocytes was decreased in the vertebral bones of Dkk1fl/fl;AdipoQcre-positive mice. Despite the increased bone mass in 12-week-old male mice, at 20 weeks of age, there was no difference in the bone volume between the controls and Dkk1fl/fl;AdipoQcre-positive mice. Also, Dkk1fl/fl;AdipoQcre-positive mice were not protected from HFD-induced bone loss. Even though mRNA expression levels of Sost, another important Wnt inhibitor, in bone from Dkk1-deficient mice fed with HFD were decreased compared to Dkk1-sufficient mice on an HFD, this did not prevent the HFD-induced suppression of bone formation. In conclusion, adipogenic Dkk1 may play a transient role in bone mass regulation during adolescence, but it does not contribute to bone homeostasis or obesity-induced bone loss later in life.
College of Medicine, Chang Gung University, Taoyuan, Taiwan
Search for other papers by Heng Yeh in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Hsuan Yeh in
Google Scholar
PubMed
Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Chun-Cheng Chiang in
Google Scholar
PubMed
Search for other papers by Ju-Ching Yen in
Google Scholar
PubMed
Department of Nephrology, China Medical University Hospital, Taichung, Taiwan
Search for other papers by I-Kuan Wang in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Shou-Hsuan Liu in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Cheng-Chia Lee in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Cheng-Hao Weng in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Wen-Hung Huang in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Ching-Wei Hsu in
Google Scholar
PubMed
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
Search for other papers by Tzung-Hai Yen in
Google Scholar
PubMed
Secondary hyperparathyroidism (SHPT) is a common complication of end-stage kidney disease (ESKD). Hungry bone syndrome (HBS) occurs frequently in patients on maintenance dialysis receiving parathyroidectomy for refractory SHPT. However, there is scanty study investigating the clinical risk factors that predict postoperative HBS, and its outcome in peritoneal dialysis (PD) patients. We conducted a single-center retrospective study to analyze 66 PD patients who had undergone parathyroidectomy for secondary hyperparathyroidism at Chang Gung Memorial Hospital between 2009 and 2019. The patients were stratified into two groups based on the presence (n=47) or absence (n=19) of HBS after parathyroidectomy. Subtotal parathyroidectomy was the most common surgery performed (74.2%), followed by total parathyroidectomy with autoimplantation (25.8%). Pathological examination of all surgical specimens revealed parathyroid hyperplasia (100%). Patients with HBS had lower levels of postoperative nadir corrected calcium, higher alkaline phosphate (ALP), and higher potassium levels compared with patients without HBS (all P<0.05). A multivariate logistic regression model confirmed that lower preoperative serum calcium level (OR 0.354, 95% CI 0.133–0.940, P=0.037), higher ALP (OR 1.026, 95% CI 1.008–1.044, P=0.004), and higher potassium level (OR 6.894, 95% CI 1.806–26.317, P=0.005) were associated with HBS after parathyroidectomy. Patients were followed for 58.2±30.8 months after the surgery. There was no significant difference between HBS and non-HBS groups in persistence (P=0.496) or recurrence (P=1.000) of hyperparathyroidism. The overall mortality rate was 10.6% with no significant difference found between both groups (P=0.099). We concluded that HBS is a common complication (71.2%) of parathyroidectomy for SHPT and should be managed appropriately.
Search for other papers by Silvia Ciancia in
Google Scholar
PubMed
Search for other papers by Vanessa Dubois in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Both in the United States and Europe, the number of minors who present at transgender healthcare services before the onset of puberty is rapidly expanding. Many of those who will have persistent gender dysphoria at the onset of puberty will pursue long-term puberty suppression before reaching the appropriate age to start using gender-affirming hormones. Exposure to pubertal sex steroids is thus significantly deferred in these individuals. Puberty is a critical period for bone development: increasing concentrations of estrogens and androgens (directly or after aromatization to estrogens) promote progressive bone growth and mineralization and induce sexually dimorphic skeletal changes. As a consequence, safety concerns regarding bone development and increased future fracture risk in transgender youth have been raised. We here review published data on bone development in transgender adolescents, focusing in particular on differences in age and pubertal stage at the start of puberty suppression, chosen strategy to block puberty progression, duration of puberty suppression, and the timing of re-evaluation after estradiol or testosterone administration. Results consistently indicate a negative impact of long-term puberty suppression on bone mineral density, especially at the lumbar spine, which is only partially restored after sex steroid administration. Trans girls are more vulnerable than trans boys for compromised bone health. Behavioral health measures that can promote bone mineralization, such as weight-bearing exercise and calcium and vitamin D supplementation, are strongly recommended in transgender youth, during the phase of puberty suppression and thereafter.
Search for other papers by E M Winter in
Google Scholar
PubMed
Search for other papers by A Ireland in
Google Scholar
PubMed
Search for other papers by N C Butterfield in
Google Scholar
PubMed
Search for other papers by M Haffner-Luntzer in
Google Scholar
PubMed
Search for other papers by M-N Horcajada in
Google Scholar
PubMed
Jan van Goyen Medical Center, Department of Internal Medicine, Amsterdam, the Netherlands
Search for other papers by A G Veldhuis-Vlug in
Google Scholar
PubMed
Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
Search for other papers by L Oei in
Google Scholar
PubMed
Search for other papers by G Colaianni in
Google Scholar
PubMed
Search for other papers by N Bonnet in
Google Scholar
PubMed
In this review we discuss skeletal adaptations to the demanding situation of pregnancy and lactation. Calcium demands are increased during pregnancy and lactation, and this is effectuated by a complex series of hormonal changes. The changes in bone structure at the tissue and whole bone level observed during pregnancy and lactation appear to largely recover over time. The magnitude of the changes observed during lactation may relate to the volume and duration of breastfeeding and return to regular menses. Studies examining long-term consequences of pregnancy and lactation suggest that there are small, site-specific benefits to bone density and that bone geometry may also be affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which the pathophysiological mechanism is as yet incompletely known; here, we discuss and speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of estrogen on this process.
Search for other papers by Haojie Zhang in
Google Scholar
PubMed
Search for other papers by Yuke Cui in
Google Scholar
PubMed
Search for other papers by Ruihua Dong in
Google Scholar
PubMed
Search for other papers by Wen Zhang in
Google Scholar
PubMed
Search for other papers by Shihan Chen in
Google Scholar
PubMed
Search for other papers by Heng Wan in
Google Scholar
PubMed
Search for other papers by Chi Chen in
Google Scholar
PubMed
Search for other papers by Yi Chen in
Google Scholar
PubMed
Search for other papers by Yuying Wang in
Google Scholar
PubMed
Search for other papers by Chunfang Zhu in
Google Scholar
PubMed
Search for other papers by Bo Chen in
Google Scholar
PubMed
Search for other papers by Ningjian Wang in
Google Scholar
PubMed
Search for other papers by Yingli Lu in
Google Scholar
PubMed
Background
Bone is thought to be the reservoir of the human lead burden, and vitamin D is associated with bone turnover. We aimed to explore whether exposure to lower 25-hydroxy vitamin D (25(OH)D) levels was associated with higher blood lead levels (BLLs) by increasing the bone turnover rate in individuals with type 2 diabetes.
Methods
A total of 4103 type 2 diabetic men and postmenopausal women in Shanghai, China, were enrolled in 2018. Their 25(OH)D, β-C-terminal telopeptide (β-CTX), N-MID osteocalcin and procollagen type 1 N-peptide (P1NP) levels were detected. Their BLLs were determined by atomic absorption spectrometry. Mediation analyses were performed to identify the possible role that bone turnover played in the underlying mechanisms.
Results
In both the men and postmenopausal women, all three bone turnover markers were inversely associated with 25(OH)D and positively associated with the BLL (all P < 0.01) after adjusting for age, current smoking habits, metabolic parameters, duration of diabetes, vitamin D intake, and use of anti-osteoporosis medication. In the mediation analyses, none of the direct associations between 25(OH)D and BLL was significant for the three bone turnover markers, but all three bone turnover markers were found to be significant mediators of the indirect associations between 25(OH)D and BLL.
Conclusion
The association between vitamin D and BLL was fully mediated by bone turnover markers in type 2 diabetic patients (mediation effect). This finding suggested that vitamin D may protect against blood lead exposure from the bone reservoir by decreasing bone turnover in individuals with type 2 diabetes.
Search for other papers by Stephen A Martin in
Google Scholar
PubMed
Search for other papers by Kenneth A Philbrick in
Google Scholar
PubMed
Search for other papers by Carmen P Wong in
Google Scholar
PubMed
Search for other papers by Dawn A Olson in
Google Scholar
PubMed
Search for other papers by Adam J Branscum in
Google Scholar
PubMed
Search for other papers by Donald B Jump in
Google Scholar
PubMed
Search for other papers by Charles K Marik in
Google Scholar
PubMed
Search for other papers by Jonathan M DenHerder in
Google Scholar
PubMed
Search for other papers by Jennifer L Sargent in
Google Scholar
PubMed
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
Search for other papers by Russell T Turner in
Google Scholar
PubMed
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
Search for other papers by Urszula T Iwaniec in
Google Scholar
PubMed
Mice are a commonly used model to investigate aging-related bone loss but, in contrast to humans, mice exhibit cancellous bone loss prior to skeletal maturity. The mechanisms mediating premature bone loss are not well established. However, our previous work in female mice suggests housing temperature is a critical factor. Premature cancellous bone loss was prevented in female C57BL/6J mice by housing the animals at thermoneutral temperature (where basal rate of energy production is at equilibrium with heat loss). In the present study, we determined if the protective effects of thermoneutral housing extend to males. Male C57BL/6J mice were housed at standard room temperature (22°C) or thermoneutral (32°C) conditions from 5 (rapidly growing) to 16 (slowly growing) weeks of age. Mice housed at room temperature exhibited reductions in cancellous bone volume fraction in distal femur metaphysis and fifth lumbar vertebra; these effects were abolished at thermoneutral conditions. Mice housed at thermoneutral temperature had higher levels of bone formation in distal femur (based on histomorphometry) and globally (serum osteocalcin), and lower global levels of bone resorption (serum C-terminal telopeptide of type I collagen) compared to mice housed at room temperature. Thermoneutral housing had no impact on bone marrow adiposity but resulted in higher abdominal white adipose tissue and serum leptin. The overall magnitude of room temperature housing-induced cancellous bone loss did not differ between male (current study) and female (published data) mice. These findings highlight housing temperature as a critical experimental variable in studies using mice of either sex to investigate aging-related changes in bone metabolism.
Search for other papers by Shu-Meng Hu in
Google Scholar
PubMed
Search for other papers by Yang-Juan Bai in
Google Scholar
PubMed
Search for other papers by Ya-Mei Li in
Google Scholar
PubMed
Search for other papers by Ye Tao in
Google Scholar
PubMed
Search for other papers by Xian-Ding Wang in
Google Scholar
PubMed
Search for other papers by Tao Lin in
Google Scholar
PubMed
Search for other papers by Lan-Lan Wang in
Google Scholar
PubMed
Search for other papers by Yun-Ying Shi in
Google Scholar
PubMed
Introduction
Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation.
Materials and methods
Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23–KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients.
Results
Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12.
Conclusion
Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.