Search Results

You are looking at 101 - 110 of 207 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
  • Abstract: Vitamin D x
Clear All Modify Search
Ying Hua Department of Administrative Office, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China

Search for other papers by Ying Hua in
Google Scholar
PubMed
Close
,
Jinqiong Fang Department of Administrative Office, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China

Search for other papers by Jinqiong Fang in
Google Scholar
PubMed
Close
,
Xiaocong Yao Department of Osteoporosis Care and Control, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China

Search for other papers by Xiaocong Yao in
Google Scholar
PubMed
Close
, and
Zhongxin Zhu Department of Osteoporosis Care and Control, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
Department of Clinical Research Center, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China

Search for other papers by Zhongxin Zhu in
Google Scholar
PubMed
Close

Background

Obesity and osteoporosis are major public health issues globally. The prevalence of these two diseases prompts the need to better understand the relationship between them. Previous studies, however, have yielded controversial findings on this issue. Therefore, our aim in this study was to evaluate the independent association between waist circumference (WC), as a marker of obesity, and the bone mineral density (BMD) of the lumbar spine among middle-aged adults using data from the National Health and Nutrition Examination Survey (NHANES).

Methods

Our analysis was based on NHANES data from 2011 to 2018, including 5084 adults, 40–59 years of age. A weighted multiple linear regression analysis was used to evaluate the association between WC and lumbar BMD, with smooth curve fitting performed for non-linearities.

Results

After adjusting for BMI and other potential confounders, WC was negatively associated with lumbar BMD in men (β = −2.8, 95% CI: −4.0 to −1.6) and premenopausal women (β = −2.6, 95% CI: −4.1 to −1.1). On subgroup analysis stratified by BMI, this negative association was more significant in men with a BMI ≥30 kg/m2 (β = −4.1, 95% CI: −6.3 to −2.0) and in pre- and postmenopausal women with a BMI <25 kg/m2 (premenopausal women: β= −5.7, 95% CI: −9.4 to−2.0; postmenopausal women: β=−5.6, 95% CI: −9.7 to −1.6). We further identified an inverted U-shaped relationship among premenopausal women, with a point of inflection at WC of 80 cm.

Conclusions

Our study found an inverse relationship between WC and lumbar BMD in middle-aged men with BMI ≥30 kg/m2, and women with BMI <25 kg/m2.

Open access
Victoria Chatzimavridou-Grigoriadou Department of Endocrinology, Christie Hospital NHS Foundation Trust, Manchester, UK
Department of Endocrinology, University of Manchester, School of Medical Sciences, Manchester, UK

Search for other papers by Victoria Chatzimavridou-Grigoriadou in
Google Scholar
PubMed
Close
,
Lisa H Barraclough Department of Endocrinology, Christie Hospital NHS Foundation Trust, Manchester, UK
Department of Endocrinology, University of Manchester, School of Medical Sciences, Manchester, UK

Search for other papers by Lisa H Barraclough in
Google Scholar
PubMed
Close
,
Rohit Kochhar Department of Clinical Oncology, Christie Hospital NHS Foundation Trust, Manchester, UK

Search for other papers by Rohit Kochhar in
Google Scholar
PubMed
Close
,
Lucy Buckley Department of Radiology, Christie Hospital NHS Foundation Trust, Manchester, UK

Search for other papers by Lucy Buckley in
Google Scholar
PubMed
Close
,
Nooreen Alam Department of Radiotherapy, Christie Hospital NHS Foundation Trust, Manchester, UK

Search for other papers by Nooreen Alam in
Google Scholar
PubMed
Close
, and
Claire E Higham Department of Endocrinology, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK

Search for other papers by Claire E Higham in
Google Scholar
PubMed
Close

Background

Radiotherapy-related insufficiency fractures (RRIFs) represent a common, burdensome consequence of pelvic radiotherapy. Their underlying mechanisms remain unclear, and data on the effect of osteoporosis are contradictory, with limited studies assessing bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA).

Methods

BMD by DXA (Hologic) scan and fracture risk following pelvic RRIF were retrospectively assessed in 39 patients (median age 68 years) at a tertiary cancer centre. Patient characteristics and treatment history are presented narratively; correlations were explored using univariate regression analyses.

Results

Additional cancer treatments included chemotherapy (n = 31), surgery (n = 20) and brachytherapy (n = 19). Median interval between initiation of radiotherapy and RRIF was 11 (7.5–20.8) and that between RRIF and DXA 3 was (1–6) months. Three patients had normal BMD, 16 had osteopenia and 16 osteoporosis, following World Health Organization classification. Four patients were <40 years at the time of DXA (all Z-scores > –2). Median 10-year risk for hip and major osteoporotic fracture was 3.1% (1.5–5.7) and 11.5% (7.1–13.8), respectively. Only 33.3% of patients had high fracture risk (hip fracture >4% and/or major osteoporotic >20%), and 31% fell above the intervention threshold per National Osteoporosis Guidelines Group (NOGG) guidance (2017). Higher BMD was predicted by lower pelvic radiotherapy dose (only in L3 and L4), concomitant chemotherapy and higher body mass index.

Conclusion

At the time of RRIF, most patients did not have osteoporosis, some had normal BMD and overall had low fracture risk. Whilst low BMD is a probable risk factor, it is unlikely to be the main mechanism underlying RRIFs, and further studies are required to understand the predictive value of BMD.

Open access
Jiaxin Zhang Department of Traditional Chinese Medicine (TCM) Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

Search for other papers by Jiaxin Zhang in
Google Scholar
PubMed
Close
,
Jinlan Jiang Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China

Search for other papers by Jinlan Jiang in
Google Scholar
PubMed
Close
,
Yao Qin School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China

Search for other papers by Yao Qin in
Google Scholar
PubMed
Close
,
Yihui Zhang Department of Traditional Chinese Medicine (TCM) Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

Search for other papers by Yihui Zhang in
Google Scholar
PubMed
Close
,
Yungang Wu Department of Traditional Chinese Medicine (TCM) Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

Search for other papers by Yungang Wu in
Google Scholar
PubMed
Close
, and
Huadong Xu School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China

Search for other papers by Huadong Xu in
Google Scholar
PubMed
Close

Purpose

This study aims to investigate the associations of the systemic immune-inflammation index (SII) with bone mineral density (BMD) and osteoporosis in adult females from a nationally representative sample.

Methods

A cross-sectional study was performed among 4092 females aged ≥20 years from the National Health and Nutrition Examination Survey 2007–2010. Linear and logistic regressions were applied to explore the relationships of SII with BMD and the risk of osteoporosis, respectively.

Results

Linear regression analyses found that a doubling of SII levels was significantly correlated with a 1.39% (95% CI: 0.57%, 2.20%) decrease in total femur BMD, a 1.16% (95% CI: 0.31%, 2.00%) decrease in femur neck BMD, a 1.73% (95% CI: 0.78%, 2.66%) decrease in trochanter BMD, and a 1.35% (95% CI: 0.50%, 2.20%) decrease in intertrochanteric BMD among postmenopausal women, after adjusting for covariates. Logistic regression analyses showed that compared with postmenopausal women in the lowest SII quartile, those in the highest quartile had higher risks of osteoporosis in the total femur (odds ratio (OR) = 1.70, 95% CI: 1.04, 2.76), trochanter (OR = 1.86, 95% CI: 1.07, 3.38), intertrochanter (OR = 2.01, 95% CI: 1.05, 4.04) as well as overall osteoporosis (OR = 1.57, 95% CI: 1.04, 2.37). In contrast, there was no significant association between SII and BMD in premenopausal women.

Conclusions

SII levels were negatively associated with BMD levels in postmenopausal women but not in premenopausal women. Elevated SII levels could be a potential risk factor for osteoporosis in postmenopausal women.

Open access
Ann-Kristin Picke Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany

Search for other papers by Ann-Kristin Picke in
Google Scholar
PubMed
Close
,
Graeme Campbell Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany

Search for other papers by Graeme Campbell in
Google Scholar
PubMed
Close
,
Nicola Napoli Diabetes and Bone Network, Department Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA

Search for other papers by Nicola Napoli in
Google Scholar
PubMed
Close
,
Lorenz C Hofbauer Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Lorenz C Hofbauer in
Google Scholar
PubMed
Close
, and
Martina Rauner Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Martina Rauner in
Google Scholar
PubMed
Close

The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40–70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.

Open access
Mojca Zerjav Tansek Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, UMC Ljubljana, Ljubljana, Slovenia
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia

Search for other papers by Mojca Zerjav Tansek in
Google Scholar
PubMed
Close
,
Ana Bertoncel University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia

Search for other papers by Ana Bertoncel in
Google Scholar
PubMed
Close
,
Brina Sebez University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia

Search for other papers by Brina Sebez in
Google Scholar
PubMed
Close
,
Janez Zibert Centre for Health Informatics and Statistics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Janez Zibert in
Google Scholar
PubMed
Close
,
Urh Groselj Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, UMC Ljubljana, Ljubljana, Slovenia
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia

Search for other papers by Urh Groselj in
Google Scholar
PubMed
Close
,
Tadej Battelino Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, UMC Ljubljana, Ljubljana, Slovenia
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia

Search for other papers by Tadej Battelino in
Google Scholar
PubMed
Close
, and
Magdalena Avbelj Stefanija Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, UMC Ljubljana, Ljubljana, Slovenia
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia

Search for other papers by Magdalena Avbelj Stefanija in
Google Scholar
PubMed
Close

Despite recent improvements in the composition of the diet, lower mineral bone density and overweight tendencies are incoherently described in patients with phenylketonuria (PKU). The impact of dietary factors and plasma phenylalanine levels on growth, BMI, body composition, and bone mineral density was investigated in our cohort of patients with hyperphenylalaninemia (HPA) with or without dietary treatment. The anthropometric, metabolic, BMI and other nutritional indicators and bone mineral density were compared between the group of 96 treated patients with PKU (58 classic PKU (cPKU) and 38 patients with moderate-mild PKU defined as non-classic PKU (non-cPKU)) and the untreated group of 62 patients with benign HPA. Having compared the treated and untreated groups, there were normal outcomes and no statistically significant differences in BMI, body composition, and bone mineral density. Lower body height standard deviation scores were observed in the treated as compared to the untreated group (P < 0.001), but the difference was not significant when analyzing patients older than 18 years; however, cPKU adults were shorter compared to non-cPKU treated adults (P = 0.012). Interestingly, the whole-body fat was statistically higher in non-cPKU as compared to cPKU patients. In conclusion, the dietary treatment ensured adequate nutrition without significant consequences in BMI, body composition, and bone mineral density. A low protein diet may have delayed the growth in childhood, but the treated patients gained a normal final height. Mild untreated hyperphenylalaninemia characteristic for benign HPA had no negative physiological effect on bone mineral density.

Open access
Veronica Kieffer
Search for other papers by Veronica Kieffer in
Google Scholar
PubMed
Close
,
Kate Davies University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Kate Davies in
Google Scholar
PubMed
Close
,
Christine Gibson University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Christine Gibson in
Google Scholar
PubMed
Close
,
Morag Middleton University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Morag Middleton in
Google Scholar
PubMed
Close
,
Jean Munday University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Jean Munday in
Google Scholar
PubMed
Close
,
Shashana Shalet University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Shashana Shalet in
Google Scholar
PubMed
Close
,
Lisa Shepherd University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Lisa Shepherd in
Google Scholar
PubMed
Close
, and
Phillip Yeoh University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Phillip Yeoh in
Google Scholar
PubMed
Close

This competency framework was developed by a working group of endocrine specialist nurses with the support of the Society for Endocrinology to enhance the clinical care that adults with an endocrine disorder receive. Nurses should be able to demonstrate that they are functioning at an optimal level in order for patients to receive appropriate care. By formulating a competency framework from which an adult endocrine nurse specialist can work, it is envisaged that their development as professional practitioners can be enhanced. This is the second edition of the Competency Framework for Adult Endocrine Nursing. It introduces four new competencies on benign adrenal tumours, hypo- and hyperparathyroidism, osteoporosis and polycystic ovary syndrome. The authors and the Society for Endocrinology welcome constructive feedback on the document, both nationally and internationally, in anticipation that further developments and ideas can be incorporated into future versions.

Open access
Lizhi Zhang Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Lizhi Zhang in
Google Scholar
PubMed
Close
,
Jinwei He Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Search for other papers by Jinwei He in
Google Scholar
PubMed
Close
,
Xiang Sun Shanghai Institute of Technology, Shanghai, China

Search for other papers by Xiang Sun in
Google Scholar
PubMed
Close
,
Dongyue Pang Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

Search for other papers by Dongyue Pang in
Google Scholar
PubMed
Close
,
Jingjing Hu Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

Search for other papers by Jingjing Hu in
Google Scholar
PubMed
Close
, and
Bo Feng Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Bo Feng in
Google Scholar
PubMed
Close

We demonstrated previously that there is a correlation between glucagon-like peptide-1 (GLP-1) single-nucleotide polymorphism (SNP) and bone mineral density in postmenopausal women. Both GLP-1 and glucose-dependent insulinotropic peptide are incretins. The glucose-dependent insulinotropic peptide receptor (GIPR) SNP rs10423928 has been extensively studied. However, it is not clear whether GIPR gene mutations affect bone metabolism. The aim of this study was to investigate the association between rs10423928 and bone mineral density in postmenopausal women in Shanghai. rs10423928 was detected in 884 postmenopausal women in Shanghai, and the correlation between the GIPR SNP and bone mineral density was assessed. The dominant T/T genotype of rs10423928 was found to be related to the bone mineral density of the femoral neck (P = 0.035). Overall, our findings indicate that the dominant T/T genotype of rs10423928 in postmenopausal women is significantly associated with a higher bone mineral density and that the T/T genotype exerts a bone-protective effect.

Open access
Katherine U Gaynor Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Katherine U Gaynor in
Google Scholar
PubMed
Close
,
Irina V Grigorieva Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Irina V Grigorieva in
Google Scholar
PubMed
Close
,
Samantha M Mirczuk Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Samantha M Mirczuk in
Google Scholar
PubMed
Close
,
Sian E Piret Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Sian E Piret in
Google Scholar
PubMed
Close
,
Kreepa G Kooblall Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Kreepa G Kooblall in
Google Scholar
PubMed
Close
,
Mark Stevenson Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Mark Stevenson in
Google Scholar
PubMed
Close
,
Karine Rizzoti The Francis Crick Institute, London, UK

Search for other papers by Karine Rizzoti in
Google Scholar
PubMed
Close
,
Michael R Bowl Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Michael R Bowl in
Google Scholar
PubMed
Close
,
M Andrew Nesbit Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by M Andrew Nesbit in
Google Scholar
PubMed
Close
,
Paul T Christie Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Paul T Christie in
Google Scholar
PubMed
Close
,
William D Fraser Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK

Search for other papers by William D Fraser in
Google Scholar
PubMed
Close
,
Tertius Hough MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK

Search for other papers by Tertius Hough in
Google Scholar
PubMed
Close
,
Michael P Whyte Washington University in St Louis School of Medicine, Center for Metabolic Bone Disease and Molecular Research, St Louis, Missouri, USA

Search for other papers by Michael P Whyte in
Google Scholar
PubMed
Close
,
Robin Lovell-Badge The Francis Crick Institute, London, UK

Search for other papers by Robin Lovell-Badge in
Google Scholar
PubMed
Close
, and
Rajesh V Thakker Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
Close

Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, which could alter SOX3 expression. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from three affected males, three unaffected males, and four carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3 −/Y and uc482 −/Y) and female heterozygous (Sox3 +/ and uc482 +/ ) knockout mice, together with wild-type littermates (male Sox3 +/Y and uc482 +/Y, and female Sox3 +/+ and uc482 +/+), revealed Sox3 −/Y, Sox3 +/ , uc482 /Y, and uc482 +/ mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3 −/Y, Sox3 +/ , uc482 −/Y, and uc482 +/ mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism and that XLHPT likely reflects a more complex mechanism.

Open access
Marianne C Astor Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Marianne C Astor in
Google Scholar
PubMed
Close
,
Kristian Løvås Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Close
,
Anette S B Wolff Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Anette S B Wolff in
Google Scholar
PubMed
Close
,
Bjørn Nedrebø Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Bjørn Nedrebø in
Google Scholar
PubMed
Close
,
Eirik Bratland Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Eirik Bratland in
Google Scholar
PubMed
Close
,
Jon Steen-Johnsen Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Jon Steen-Johnsen in
Google Scholar
PubMed
Close
, and
Eystein S Husebye Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close

Primary hypomagnesemia with secondary hypocalcemia (HSH) is an autosomal recessive disorder characterized by neuromuscular symptoms in infancy due to extremely low levels of serum magnesium and moderate to severe hypocalcemia. Homozygous mutations in the magnesium transporter gene transient receptor potential cation channel member 6 (TRPM6) cause the disease. HSH can be misdiagnosed as primary hypoparathyroidism. The aim of this study was to describe the genetic, clinical and biochemical features of patients clinically diagnosed with HSH in a Norwegian cohort. Five patients in four families with clinical features of HSH were identified, including one during a national survey of hypoparathyroidism. The clinical history of the patients and their families were reviewed and gene analyses of TRPM6 performed. Four of five patients presented with generalized seizures in infancy and extremely low levels of serum magnesium accompanied by moderate hypocalcemia. Two of the patients had an older sibling who died in infancy. Four novel mutations and one large deletion in TRPM6 were identified. In one patient two linked homozygous mutations were located in exon 22 (p.F978L) and exon 23 (p.G1042V). Two families had an identical mutation in exon 25 (p.E1155X). The fourth patient had a missense mutation in exon 4 (p.H61N) combined with a large deletion in the C-terminal end of the gene. HSH is a potentially lethal condition that can be misdiagnosed as primary hypoparathyroidism. The diagnosis is easily made if serum magnesium is measured. When treated appropriately with high doses of oral magnesium supplementation, severe hypomagnesemia is uncommon and the long-term prognosis seems to be good.

Open access
Souad Daamouch Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Souad Daamouch in
Google Scholar
PubMed
Close
,
Sylvia Thiele Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Close
,
Lorenz Hofbauer Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Lorenz Hofbauer in
Google Scholar
PubMed
Close
, and
Martina Rauner Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Martina Rauner in
Google Scholar
PubMed
Close

The link between obesity and low bone strength has become a significant medical concern. The canonical Wnt signaling pathway is a key regulator of mesenchymal stem cell differentiation into either osteoblasts or adipocytes with active Wnt signaling promoting osteoblastogenesis. Our previous research indicated that Dickkopf-1 (Dkk1), a Wnt inhibitor, is upregulated in bone tissue in obesity and that osteoblast-derived Dkk1 drives obesity-induced bone loss. However, Dkk1 is also produced by adipocytes, but the impact of adipogenic Dkk1 on bone remodeling and its role in obesity-induced bone loss remain unclear. Thus, in this study, we investigated the influence of adipogenic Dkk1 on bone homeostasis and obesity-induced bone loss in mice. To that end, deletion of Dkk1 in adipocytes was induced by tamoxifen administration into 8-week-old male Dkk1fl/fl;AdipoQcreERT2 mice. Bone and fat mass were analyzed at 12 and 20 weeks of age. Obesity was induced in 8-week-old male Dkk1fl/fl;AdipoQcre mice with a high-fat diet (HFD) rich in saturated fats for 12 weeks. We observed that 12-week-old male mice without adipogenic Dkk1 had a significant increase in trabecular bone volume in the vertebrae and femoral bones. While histological and serological bone formation markers were not different, the number of osteoclasts and adipocytes was decreased in the vertebral bones of Dkk1fl/fl;AdipoQcre-positive mice. Despite the increased bone mass in 12-week-old male mice, at 20 weeks of age, there was no difference in the bone volume between the controls and Dkk1fl/fl;AdipoQcre-positive mice. Also, Dkk1fl/fl;AdipoQcre-positive mice were not protected from HFD-induced bone loss. Even though mRNA expression levels of Sost, another important Wnt inhibitor, in bone from Dkk1-deficient mice fed with HFD were decreased compared to Dkk1-sufficient mice on an HFD, this did not prevent the HFD-induced suppression of bone formation. In conclusion, adipogenic Dkk1 may play a transient role in bone mass regulation during adolescence, but it does not contribute to bone homeostasis or obesity-induced bone loss later in life.

Open access