Search Results
You are looking at 51 - 60 of 572 items for
- Abstract: Aging x
- Abstract: Autoimmune x
- Abstract: Inflammation x
Search for other papers by Renea A Taylor in
Google Scholar
PubMed
Search for other papers by Jennifer Lo in
Google Scholar
PubMed
Search for other papers by Natasha Ascui in
Google Scholar
PubMed
Search for other papers by Matthew J Watt in
Google Scholar
PubMed
The global epidemic of obesity is closely linked to the development of serious co-morbidities, including many forms of cancer. Epidemiological evidence consistently shows that obesity is associated with a similar or mildly increased incidence of prostate cancer but, more prominently, an increased risk for aggressive prostate cancer and prostate cancer-specific mortality. Studies in mice demonstrate that obesity induced by high-fat feeding increases prostate cancer progression; however, the mechanisms underpinning this relationship remain incompletely understood. Adipose tissue expansion in obesity leads to local tissue dysfunction and is associated with low-grade inflammation, alterations in endocrine function and changes in lipolysis that result in increased delivery of fatty acids to tissues of the body. The human prostate gland is covered anteriorly by the prominent peri-prostatic adipose tissue and laterally by smaller adipose tissue depots that lie directly adjacent to the prostatic surface. We discuss how the close association between dysfunctional adipose tissue and prostate epithelial cells might result in bi-directional communication to cause increased prostate cancer aggressiveness and progression. However, the literature indicates that several ‘mainstream’ hypotheses regarding obesity-related drivers of prostate cancer progression are not yet supported by a solid evidence base and, in particular, are not supported by experiments using human tissue. Understanding the links between obesity and prostate cancer will have major implications for the health policy for men with prostate cancer and the development of new therapeutic or preventative strategies.
Search for other papers by Elizabeth Yan Zhang in
Google Scholar
PubMed
Department of Pharmacology, Department of Biology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Room 4061 of KLSIC Building, 2146 West 39th Street, Kansas City, Kansas 66160, USA
Search for other papers by Bao-Ting Zhu in
Google Scholar
PubMed
The endogenous estrogens are important modulators of the immune system and its functions. However, their effects are rather complex and many aspects have not been studied. In this study, we used the 1-chloro-2,4-dinitrobenzene (DNCB)-induced contact dermatitis as a disease model and investigated the effect of estriol (E3), along with two other estrogens, 17β-estradiol and estrone, on the pathogenesis of contact hypersensitivity. A series of parameters, such as ear swelling, skin inflammation, antigen-specific immunoglobulins, and lymphocyte compositions in peripheral lymphoid organs, were evaluated in mice following development of contact dermatitis. We found that administration of all three estrogens elicited strong inhibition of DNCB-induced dermatitis, while E3 exerted the strongest suppressive effect. Administration of E3 alleviated dermatitis, and this effect was accompanied by decreases in serum DNCB-specific immunoglobulins, such as IgA, IgG1, IgG2a, and IgG2b. Besides, treatment with E3 reduced B cell population, especially IgG-producing cells in the peripheral lymphoid organs following the induction of dermatitis. These observations consistently suggest that the antibody (Ab)-mediated humoral immune reactions play a critical role in the pathogenesis of DNCB-induced contact dermatitis. The results from this study demonstrate, for the first time, that estrogen administration has a strong suppressive effect on the pathogenesis of contact dermatitis. These findings offer important insights concerning the pathogenic role of antigen-specific Abs in contact dermatitis and the treatment of chemical-induced, Ab-mediated skin hypersensitivity reactions in humans.
Search for other papers by Karim Gariani in
Google Scholar
PubMed
Service of Endocrinology, Laboratory of Intensive Care, Department of Microbiology and Molecular Medicine, Diabetes, Hypertension and Nutrition
Search for other papers by Geneviève Drifte in
Google Scholar
PubMed
Service of Endocrinology, Laboratory of Intensive Care, Department of Microbiology and Molecular Medicine, Diabetes, Hypertension and Nutrition
Search for other papers by Irène Dunn-Siegrist in
Google Scholar
PubMed
Service of Endocrinology, Laboratory of Intensive Care, Department of Microbiology and Molecular Medicine, Diabetes, Hypertension and Nutrition
Search for other papers by Jérôme Pugin in
Google Scholar
PubMed
Search for other papers by François R Jornayvaz in
Google Scholar
PubMed
Fibroblast growth factor 21 (FGF21) is a key regulator in glucose and lipid metabolism and its plasma levels have been shown to be increased not only in humans in different situations such as type 2 diabetes, obesity, and nonalcoholic fatty liver disease but also in animal models of sepsis and pancreatitis. FGF21 is considered as a pharmacological candidate in conditions associated with insulin resistance. The aim of this study was to compare FGF21 plasma levels in patients with sepsis, in patients with systemic inflammatory response syndrome (SIRS), and in healthy controls. We measured FGF21 plasma concentrations in 22 patients with established sepsis, in 11 with SIRS, and in 12 healthy volunteers. Here, we show that FGF21 levels were significantly higher in plasma obtained from patients with sepsis and SIRS in comparison with healthy controls. Also, FGF21 levels were significantly higher in patients with sepsis than in those with noninfectious SIRS. FGF21 plasma levels measured at study entry correlated positively with the APACHE II score, but not with procalcitonin levels, nor with C-reactive protein, classical markers of sepsis. Plasma concentrations of FGF21 peaked near the onset of shock and rapidly decreased with clinical improvement. Taken together, these results indicate that circulating levels of FGF21 are increased in patients presenting with sepsis and SIRS, and suggest a role for FGF21 in inflammation. Further studies are needed to explore the potential role of FGF21 in sepsis as a potential therapeutic target.
Search for other papers by Tatsuya Kondo in
Google Scholar
PubMed
Search for other papers by Nobukazu Miyakawa in
Google Scholar
PubMed
Search for other papers by Sayaka Kitano in
Google Scholar
PubMed
Search for other papers by Takuro Watanabe in
Google Scholar
PubMed
Search for other papers by Rieko Goto in
Google Scholar
PubMed
Search for other papers by Mary Ann Suico in
Google Scholar
PubMed
Search for other papers by Miki Sato in
Google Scholar
PubMed
Search for other papers by Yuki Takaki in
Google Scholar
PubMed
Search for other papers by Masaji Sakaguchi in
Google Scholar
PubMed
Search for other papers by Motoyuki Igata in
Google Scholar
PubMed
Search for other papers by Junji Kawashima in
Google Scholar
PubMed
Search for other papers by Hiroyuki Motoshima in
Google Scholar
PubMed
Search for other papers by Takeshi Matsumura in
Google Scholar
PubMed
Search for other papers by Hirofumi Kai in
Google Scholar
PubMed
Search for other papers by Eiichi Araki in
Google Scholar
PubMed
Nonalcoholic fatty liver disease (NAFLD) is often accompanied by metabolic disorders such as metabolic syndrome and type 2 diabetes (T2DM). Heat shock response (HSR) is one of the most important homeostatic abilities but is deteriorated by chronic metabolic insults. Heat shock (HS) with an appropriate mild electrical stimulation (MES) activates HSR and improves metabolic abnormalities including insulin resistance, hyperglycemia and inflammation in metabolic disorders. To analyze the effects of HS + MES treatment on NAFLD biomarkers, three cohorts including healthy men (two times/week, n = 10), patients with metabolic syndrome (four times/week, n = 40), and patients with T2DM (n = 100; four times/week (n = 40) and two, four, seven times/week (n = 20 each)) treated with HS + MES were retrospectively analyzed. The healthy subjects showed no significant alterations in NAFLD biomarkers after the treatment. In patients with metabolic syndrome, many of the NAFLD steatosis markers, including fatty liver index, NAFLD-liver fat score, liver/spleen ratio and hepatic steatosis index and NAFLD fibrosis marker, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, were improved upon the treatment. In patients with T2DM, all investigated NAFLD steatosis markers were improved and NAFLD fibrosis markers such as the AST/ALT ratio, fibrosis-4 index and NAFLD-fibrosis score were improved upon the treatment. Thus, HS + MES, a physical intervention, may become a novel treatment strategy for NAFLD as well as metabolic disorders.
Search for other papers by Ling Zhou in
Google Scholar
PubMed
Search for other papers by Ruixue Zhang in
Google Scholar
PubMed
Search for other papers by Shuangyan Yang in
Google Scholar
PubMed
Search for other papers by Yaguang Zhang in
Google Scholar
PubMed
Search for other papers by Dandan Shi in
Google Scholar
PubMed
Background:
Our previous study revealed that astragaloside IV (AS-IV) effectively improved gestational diabetes mellitus (GDM) by reducing hepatic gluconeogenesis. Due to the importance of placental oxidative stress, we further explored the protective role of AS-IV on placental oxidative stress in GDM.
Methods:
First, non-pregnant mice were orally administrated with AS-IV to evaluate its safety and effect. Then GDM mice were orally administered with AS-IV for 20 days and its effect on the symptoms of GDM, placental oxidative stress, secretions of inflammatory cytokines, as well as toll-like receptor 4 (TLR4)/NF-κB signaling pathway, were evaluated.
Results:
AS-IV had no adverse effect on non-pregnant mice. On the other hand, AS-IV significantly attenuated the GDM-induced hyperglycemia, glucose intolerance, insulin resistance, placental oxidative stress, productions of inflammatory cytokines and the activation of TLR4/NF-κB pathway.
Conclusion:
AS-IV effectively protected against GDM by alleviating placental oxidative stress and inflammation, in which TLR4/NF-κB might be involved.
Search for other papers by Angelo Maria Patti in
Google Scholar
PubMed
Search for other papers by Kalliopi Pafili in
Google Scholar
PubMed
Search for other papers by Nikolaos Papanas in
Google Scholar
PubMed
Search for other papers by Manfredi Rizzo in
Google Scholar
PubMed
Hormonal changes during pregnancy can trigger gestational diabetes (GDM), which is constantly increasing. Its main characteristic is pronounced insulin resistance, but it appears to be a multifactorial process involving several metabolic factors; taken together, the latter leads to silent or clinically evident cardiovascular (CV) events. Insulin resistance and central adiposity are of crucial importance in the development of metabolic syndrome, and they appear to correlate with CV risk factors, including hypertension and atherogenic dyslipidaemia. Hypertensive disease of pregnancy (HDP) is more likely to be an accompanying co-morbidity in pregnancies complicated with GDM. There is still inconsistent evidence as to whether or not co-existent GDM and HDP have a synergistic effects on postpartum risk of cardiometabolic disease; however, this synergism is becoming more accepted since both these conditions may promote endothelial inflammation and early atherosclerosis. Regardless of the presence or absence of the synergism between GDM and HDP, these conditions need to be dealt early enough, in order to reduce CV morbidity and to improve health outcomes for both women and their offspring.
Search for other papers by Stavroula A Paschou in
Google Scholar
PubMed
Search for other papers by Nektaria Papadopoulou-Marketou in
Google Scholar
PubMed
Search for other papers by George P Chrousos in
Google Scholar
PubMed
Search for other papers by Christina Kanaka-Gantenbein in
Google Scholar
PubMed
Type 1 diabetes mellitus (T1DM) results from the autoimmune destruction of β cells of the endocrine pancreas. Pathogenesis of T1DM is different from that of type 2 diabetes mellitus, where both insulin resistance and reduced secretion of insulin by the β cells play a synergistic role. We will present genetic, environmental and immunologic factors that destroy β cells of the endocrine pancreas and lead to insulin deficiency. The process of autoimmune destruction takes place in genetically susceptible individuals under the triggering effect of one or more environmental factors and usually progresses over a period of many months to years, during which period patients are asymptomatic and euglycemic, but positive for relevant autoantibodies. Symptomatic hyperglycemia and frank diabetes occur after a long latency period, which reflects the large percentage of β cells that need to be destroyed before overt diabetes become evident.
Search for other papers by Nancy J Olsen in
Google Scholar
PubMed
Search for other papers by Ann L Benko in
Google Scholar
PubMed
Search for other papers by William J Kovacs in
Google Scholar
PubMed
Clinical and experimental evidence support a role for gonadal steroids in modulating the expression and course of autoimmune diseases such as lupus. Whether or not inherited variation in sensitivity to circulating androgenic hormones could influence the manifestations of such disease is, however, unknown. We sought to determine whether differences in androgen sensitivity conferred by variation in the exon 1 CAG repeat region of the androgen receptor (AR) gene were associated with differences in the clinical or humoral immune manifestations of lupus in a cohort of female subjects. We found that shorter AR CAG repeat lengths in lupus subjects correlated with a higher Systemic Lupus Erythematosus Disease Activity Index score, higher ANA levels, and expression of a broader array of IgG autoantibodies. Our findings of more severe clinical manifestations and more exuberant humoral autoimmunity in women with a shorter AR exon 1 CAG repeat length suggest a role for genetically determined sensitivity to androgens as a modulator of autoimmune processes.
Search for other papers by Weiwei He in
Google Scholar
PubMed
Search for other papers by Bin Wang in
Google Scholar
PubMed
Search for other papers by Kaida Mu in
Google Scholar
PubMed
Search for other papers by Jing Zhang in
Google Scholar
PubMed
Search for other papers by Yanping Yang in
Google Scholar
PubMed
Search for other papers by Wei Yao in
Google Scholar
PubMed
Search for other papers by Sheli Li in
Google Scholar
PubMed
Search for other papers by Jin-an Zhang in
Google Scholar
PubMed
Background
Accumulating data have shown that interleukin-27 (IL27) polymorphisms are linked to the susceptibility of some autoimmune diseases. We assessed whether there was an association between three single-nucleotide polymorphisms (SNPs) of IL27 gene and autoimmune thyroid diseases (AITDs).
Methods
Three SNPs (rs153109, rs17855750 and rs181206) of IL27 gene were genotyped by Hi-SNP high-throughput genotyping in 843 patients with AITDs (516 Graves’ disease (GD) and 327 Hashimoto’s thyroiditis (HT)) and 677 healthy controls in Chinese Han population.
Results
Compared with controls, rs153109 displayed significant associations with GD in allele and genotype frequencies (P = 0.002 and P = 0.008, respectively) and rs17855750 displayed significant associations with HT in allele frequencies (P = 0.02), whereas no differences in genotype or allele frequencies were found between AITD patients and controls at rs181206.
Conclusion
Our study, for the first time, showed the significant association of the IL27 gene SNPs with AITD.
AESKU.KIPP Institute, Wendelsheim, Germany
Search for other papers by Aaron Lerner in
Google Scholar
PubMed
Search for other papers by Patricia Jeremias in
Google Scholar
PubMed
Search for other papers by Torsten Matthias in
Google Scholar
PubMed
Autoimmune thyroiditis has an increased prevalence in patients with celiac disease and vice versa. The objective of the current review is to highlight the epidemiological, clinical, serological, pathological, pathophysiological, hormonal, genetic and immunological factors shared between the two entities. They might represent the two ends of the gut-thyroid axis where the cross-talks’ pathways are still unravelled. New observations are reviewed, highlighting some gut-thyroid interrelated pathways that potentially might lead to new therapeutic strategies.