Search Results
Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Search for other papers by Thomas Edouard in
Google Scholar
PubMed
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
Search for other papers by Mohamad Maghnie in
Google Scholar
PubMed
Search for other papers by Alberto Pietropoli in
Google Scholar
PubMed
Search for other papers by Nicky Kelepouris in
Google Scholar
PubMed
Search for other papers by Alicia Romano in
Google Scholar
PubMed
Search for other papers by Martin Zenker in
Google Scholar
PubMed
Search for other papers by Reiko Horikawa in
Google Scholar
PubMed
Introduction
Mutations in PTPN11 are associated with Noonan syndrome (NS). Although the effectiveness of growth hormone therapy (GHT) in treating short stature due to NS has been previously demonstrated, the effect of PTPN11 mutation status on the long-term outcomes of GHT remains to be elucidated.
Methods
This analysis included pooled data from the observational American Norditropin Studies: Web-Enabled Research Program (NCT01009905) and the randomized, double-blinded GHLIQUID-4020 clinical trial (NCT01927861). Pediatric patients with clinically diagnosed NS and confirmed PTPN11mutation status were eligible for inclusion. The effectiveness analysis included patients who were GHT-naïve and pre-pubertal at GHT start. Growth outcomes and safety were assessed over 4 years of GHT (Norditropin®, Novo Nordisk A/S).
Results
A total of 69 patients were included in the effectiveness analysis (71% PTPN11 positive). The proportion of females was 32.7 and 30.0% in PTPN11-positive and negative patients, respectively, and mean age at GHT start was 6.4 years in both groups. Using general population reference data, after 4 years of GHT, the mean (s.d.) height SD score (HSDS) was −1.9 (1.1) and −1.7 (0.8) for PTPN11-positive and PTPN11-negative patients, respectively, with no statistical difference observed between groups. The mean (s.d.) change in HSDS at 4 years was +1.3 (0.8) in PTPN11-positive patients and +1.5 (0.7) in PTPN11-negative patients (no significant differences between groups). Safety findings were consistent with previous analyses.
Conclusions
GHT resulted in improved growth outcomes over 4 years in GHT-naïve, pre-pubertal NS patients, irrespective of PTPN11 mutation status.
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤−2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader–Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH–insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent’s height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent’s heights ≤−2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent’s height and BA are clinical predictors of monogenic FSS.