Search Results
Search for other papers by Athanasios D Anastasilakis in
Google Scholar
PubMed
Search for other papers by Marina Tsoli in
Google Scholar
PubMed
Search for other papers by Gregory Kaltsas in
Google Scholar
PubMed
Search for other papers by Polyzois Makras in
Google Scholar
PubMed
Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that involves immune cell activation and frequently affects the skeleton. Bone involvement in LCH usually presents in the form of osteolytic lesions along with low bone mineral density. Various molecules involved in bone metabolism are implicated in the pathogenesis of LCH or may be affected during the course of the disease, including interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy. Given the implication of RANK, RANKL and OPG in the pathogenesis of the disease and the osteolytic nature of bone lesions, agents aiming at inhibiting the RANKL pathway and/or osteoclastic activation, such as bisphosphonates and denosumab, may have a role in the therapeutic approach of LCH although further clinical investigation is warranted.
Search for other papers by Silvia Ciancia in
Google Scholar
PubMed
Search for other papers by Vanessa Dubois in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Both in the United States and Europe, the number of minors who present at transgender healthcare services before the onset of puberty is rapidly expanding. Many of those who will have persistent gender dysphoria at the onset of puberty will pursue long-term puberty suppression before reaching the appropriate age to start using gender-affirming hormones. Exposure to pubertal sex steroids is thus significantly deferred in these individuals. Puberty is a critical period for bone development: increasing concentrations of estrogens and androgens (directly or after aromatization to estrogens) promote progressive bone growth and mineralization and induce sexually dimorphic skeletal changes. As a consequence, safety concerns regarding bone development and increased future fracture risk in transgender youth have been raised. We here review published data on bone development in transgender adolescents, focusing in particular on differences in age and pubertal stage at the start of puberty suppression, chosen strategy to block puberty progression, duration of puberty suppression, and the timing of re-evaluation after estradiol or testosterone administration. Results consistently indicate a negative impact of long-term puberty suppression on bone mineral density, especially at the lumbar spine, which is only partially restored after sex steroid administration. Trans girls are more vulnerable than trans boys for compromised bone health. Behavioral health measures that can promote bone mineralization, such as weight-bearing exercise and calcium and vitamin D supplementation, are strongly recommended in transgender youth, during the phase of puberty suppression and thereafter.
Search for other papers by Mieke Van Hemelrijck in
Google Scholar
PubMed
Search for other papers by Thurkaa Shanmugalingam in
Google Scholar
PubMed
Search for other papers by Cecilia Bosco in
Google Scholar
PubMed
Search for other papers by Wahyu Wulaningsih in
Google Scholar
PubMed
Search for other papers by Sabine Rohrmann in
Google Scholar
PubMed
Background
Despite mounting evidence linking both calcium and IGF1, there is a lack of studies investigating any association between circulating levels of IGF1 and serum calcium.
Methods
Serum calcium, IGF1, and IGF-binding protein 3 (IGFBP3) were measured for 5368 participants in NHANES III. We calculated multivariable-adjusted geometric means of serum concentrations of IGF1, IGFBP3, and IGF1/IGFBP3 by categories of calcium (lowest 5% (<1.16 mmol/l), mid 90%, and top 5% (≥1.31 mmol/l)). We also performed stratified analyses by sex, age, ethnicity, BMI, serum levels of vitamin D, and bone mineral density (BMD).
Results
Overall, we found that circulating calcium was positively associated with circulating levels of IGF1 and IGFBP3, but not their molar ratio (i.e., geometric mean of IGF1 by increasing calcium categories: 237.63, 246.51, and 264.22 ng/nl; P trend: 0.43; P first vs third category: 0.01). In particular, these associations were observed in women, people aged <60, non-Hispanic whites, those with vitamin D levels above the mean, and those with low BMD. In contrast, there was an inverse association with the molar ratio for those with BMI ≥30 kg/m2.
Conclusion
We found an overall positive association between circulating levels of IGF1 and IGFBP3 and serum calcium. However, stratification by potential effect-modifiers did not support all suggested hypotheses. Our findings provide more insight into the interplay between calcium and IGF1, which in the future can be investigated in larger observational studies allowing for additional stratifications based on a combination of the different effect-modifiers investigated here.
Search for other papers by Huda M Elsharkasi in
Google Scholar
PubMed
Search for other papers by Suet C Chen in
Google Scholar
PubMed
Search for other papers by Lewis Steell in
Google Scholar
PubMed
Paediatric Neurosciences Research Group, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
Search for other papers by Shuko Joseph in
Google Scholar
PubMed
Search for other papers by Naiemh Abdalrahaman in
Google Scholar
PubMed
Search for other papers by Christie McComb in
Google Scholar
PubMed
Search for other papers by Blair Johnston in
Google Scholar
PubMed
Search for other papers by John Foster in
Google Scholar
PubMed
Search for other papers by Sze Choong Wong in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Objective
The aim of this study is to investigate the role of 3T-MRI in assessing musculoskeletal health in children and young people.
Design
Bone, muscle and bone marrow imaging was performed in 161 healthy participants with a median age of 15.0 years (range, 8.0, 30.0).
Methods
Detailed assessment of bone microarchitecture (constructive interference in the steady state (CISS) sequence, voxel size 0.2 × 0.2 × 0.4 mm3), bone geometry (T1-weighted turbo spin echo (TSE) sequence, voxel size 0.4 × 0.4 × 2 mm3) and bone marrow (1H-MRS, point resolved spectroscopy sequence (PRESS) (single voxel size 20 × 20 × 20 mm3) size and muscle adiposity (Dixon, voxel size 1.1 × 1.1 × 2 mm3).
Results
There was an inverse association of apparent bone volume/total volume (appBV/TV) with age (r = −0.5, P < 0.0005). Cortical area, endosteal and periosteal circumferences and muscle cross-sectional area showed a positive association to age (r > 0.49, P < 0.0001). In those over 17 years of age, these parameters were also higher in males than females (P < 0.05). This sex difference was also evident for appBV/TV and bone marrow adiposity (BMA) in the older participants (P < 0.05). AppBV/TV showed a negative correlation with BMA (r = −0.22, P = 0.01) which also showed an association with muscle adiposity (r = 0.24, P = 0.04). Cortical geometric parameters were highly correlated with muscle area (r > 0.57, P < 0.01).
Conclusions
In addition to providing deep insight into the normal relationships between bone, fat and muscle in young people, these novel data emphasize the role of MRI as a non-invasive method for performing a comprehensive and integrated assessment of musculoskeletal health in the growing skeleton.
Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Search for other papers by Kaiyu Pan in
Google Scholar
PubMed
Search for other papers by Chengyue Zhang in
Google Scholar
PubMed
Search for other papers by Xiaocong Yao in
Google Scholar
PubMed
Search for other papers by Zhongxin Zhu in
Google Scholar
PubMed
Aim
Ensuring adequate calcium (Ca) intake during childhood and adolescence is critical to acquire good peak bone mass to prevent osteoporosis during older age. As one of the primary strategies to build and maintain healthy bones, we aimed to determine whether dietary Ca intake has an influence on bone mineral density (BMD) in children and adolescents.
Methods
We conducted a cross-sectional study composed of 10,092 individuals from the National Health and Nutrition Examination Survey (NHANES). Dietary Ca intake and total BMD were taken as independent and dependent variables, respectively. To evaluate the association between them, we conducted weighted multivariate linear regression models and smooth curve fittings.
Results
There was a significantly positive association between dietary Ca intake and total BMD. The strongest association was observed in 12–15 year old whites, 8–11 year old and 16–19 year old Mexican Americans, and 16–19 year old individuals from other race/ethnicity, in whom each quintile of Ca intake was increased. We also found that there were significant inflection points in females, blacks, and 12–15 year old adolescents group, which means that their total BMD would decrease when the dietary Ca intake was more than 2.6–2.8 g/d.
Conclusions
This cross-sectional study indicated that a considerable proportion of children and adolescents aged 8–19 years would attain greater total BMD if they increased their dietary Ca intake. However, higher dietary Ca intake (more than 2.6–2.8 g/d) is associated with lower total BMD in females, blacks, and 12–15 year old adolescents group.
Search for other papers by Ann-Kristin Picke in
Google Scholar
PubMed
Search for other papers by Graeme Campbell in
Google Scholar
PubMed
Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
Search for other papers by Nicola Napoli in
Google Scholar
PubMed
Search for other papers by Lorenz C Hofbauer in
Google Scholar
PubMed
Search for other papers by Martina Rauner in
Google Scholar
PubMed
The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40–70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Mojca Zerjav Tansek in
Google Scholar
PubMed
Search for other papers by Ana Bertoncel in
Google Scholar
PubMed
Search for other papers by Brina Sebez in
Google Scholar
PubMed
Search for other papers by Janez Zibert in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Urh Groselj in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Tadej Battelino in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Magdalena Avbelj Stefanija in
Google Scholar
PubMed
Despite recent improvements in the composition of the diet, lower mineral bone density and overweight tendencies are incoherently described in patients with phenylketonuria (PKU). The impact of dietary factors and plasma phenylalanine levels on growth, BMI, body composition, and bone mineral density was investigated in our cohort of patients with hyperphenylalaninemia (HPA) with or without dietary treatment. The anthropometric, metabolic, BMI and other nutritional indicators and bone mineral density were compared between the group of 96 treated patients with PKU (58 classic PKU (cPKU) and 38 patients with moderate-mild PKU defined as non-classic PKU (non-cPKU)) and the untreated group of 62 patients with benign HPA. Having compared the treated and untreated groups, there were normal outcomes and no statistically significant differences in BMI, body composition, and bone mineral density. Lower body height standard deviation scores were observed in the treated as compared to the untreated group (P < 0.001), but the difference was not significant when analyzing patients older than 18 years; however, cPKU adults were shorter compared to non-cPKU treated adults (P = 0.012). Interestingly, the whole-body fat was statistically higher in non-cPKU as compared to cPKU patients. In conclusion, the dietary treatment ensured adequate nutrition without significant consequences in BMI, body composition, and bone mineral density. A low protein diet may have delayed the growth in childhood, but the treated patients gained a normal final height. Mild untreated hyperphenylalaninemia characteristic for benign HPA had no negative physiological effect on bone mineral density.
Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Lizhi Zhang in
Google Scholar
PubMed
Search for other papers by Jinwei He in
Google Scholar
PubMed
Search for other papers by Xiang Sun in
Google Scholar
PubMed
Search for other papers by Dongyue Pang in
Google Scholar
PubMed
Search for other papers by Jingjing Hu in
Google Scholar
PubMed
Search for other papers by Bo Feng in
Google Scholar
PubMed
We demonstrated previously that there is a correlation between glucagon-like peptide-1 (GLP-1) single-nucleotide polymorphism (SNP) and bone mineral density in postmenopausal women. Both GLP-1 and glucose-dependent insulinotropic peptide are incretins. The glucose-dependent insulinotropic peptide receptor (GIPR) SNP rs10423928 has been extensively studied. However, it is not clear whether GIPR gene mutations affect bone metabolism. The aim of this study was to investigate the association between rs10423928 and bone mineral density in postmenopausal women in Shanghai. rs10423928 was detected in 884 postmenopausal women in Shanghai, and the correlation between the GIPR SNP and bone mineral density was assessed. The dominant T/T genotype of rs10423928 was found to be related to the bone mineral density of the femoral neck (P = 0.035). Overall, our findings indicate that the dominant T/T genotype of rs10423928 in postmenopausal women is significantly associated with a higher bone mineral density and that the T/T genotype exerts a bone-protective effect.
Search for other papers by Martine Cohen-Solal in
Google Scholar
PubMed
Search for other papers by Thomas Funck-Brentano in
Google Scholar
PubMed
Department of Renal Physiology, Necker Hospital, Université de Paris, Paris, France
Search for other papers by Pablo Ureña Torres in
Google Scholar
PubMed
Mineral and bone diseases (MBD) are predominant in patients with chronic kidney disease (CKD) and lead to several bone manifestations, from pain to skeletal fractures. Cumulative traditional clinical risk factors, such as age and gender, in addition to those related to CKD, enhance the risk of comorbidity and mortality related to fractures. Despite great advances in understanding MBD in CKD, clinical and biological targets are lacking, which leads to under-management of fractures. Optimal PTH control results in a net improvement in defining the levels of bone remodeling. In addition, circulating biomarkers such as bone-specific alkaline phosphatase and cross-linked collagen type I peptide will also provide additional information about remodeling rate, bone mineralization and the evaluation of fracture risk. Imaging techniques identify patients at risk by measurement of bone mineral density by DEXA or by high peripheral QCT, which allow the discrimination of trabecular and cortical bone. Here, we have reviewed the literature related to epidemiology and the pathophysiological role of mineral and biochemical factors involved in CKD-MBD with a special focus on fracture risk. We also provide an algorithm that could be used for the management of bone diseases and to guide treatment decisions. Finally, the combined expertise of clinicians from various disciplines is crucial for the best prevention of fractures.